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PREFACE

This work is devoted to the science and arnt of the mathematical
description of dynamics found in various technical processes and systems
with spatially lumped and distributed parameters. The reader will find
basic and indispensable knowledge here, and master the techniques and
secrets for devising a dynamic mathematical model making use of the
fundamental laws of nature; the laws of conservation of mass, energy and
momentum. But this is the book's lesser part, it is not merely designed to
provide insight into the general and special aspects of the mathematical
modeling of thermal, mechanical, hydraulic, pneumatic and chemical
dynamic systems. Other goals and purposes also motivated the volume
you are holding.

Firstly, to show the real 1elationships beiween the process variables,
physical and geometrical properties and the structure, coefficients and
parameters of mathematical models. i.e. to show the connections between
the physical world and abstract concepts of eigenvalues, poles and zeros
of state-space models and their Laplace representations in the s-domain.

Secondly, to present how indispensable assumptions in the modeling
process are mapped onto a mathematical structure and the parameteirs of
such dynamic (and static) models.

Thirdly, to show connections, similarities and diffsrences between
dynamic models of lumped and distributed systems, with particular
attention to the question of discretization (i.e. model reduction) and its
consequences in the world of both model structure and parameters, and in
the representation of real dynamic properties. The limitations of analytical
tools are pointed out in even the most elementary and simplest distributed
systems.
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To 1ealize these tasks it is possible (even necessary and useful) to
analyze the dynamics of physically completely different processes using
the same unified procedure and method. From this stem two important
characteristics of the book as a whole - a consistent apprcach to the
dynamics of different systems using the concepts of dynamic variables
(accumulated variable, effort, flow and general acceleration) and dynamic
coefficients (of capacity, resistance and inertia). and state-space
representation of all the obtained lumped models. The latter feature could
be of particular use for control system analysts and designers.

The book is divided into thiee chapters (followed by an Appendix with
a presentation of the basic mathematical tocls used in the book).

The introductory chapter ouilines the overall concept of the whole
book. It defines the basic ideas, gives a process classification, defines the
focal dynamic pioblem and inttoduces the basic concepts of dynamic
variables and cosfficients in diiferent technical systems. The rest of the
book is then divided according to dependence of system parameters upon
the spatial coordinate.

Chapter 2 considers processes with lummped parameters. The process of
mass storage, fluid flow, heat transfer and mechanical processes of rigid
body motion are then thoroughly examined. It is pointed 1o their basic and
common dynamic properties (named here as proportional, integral and
derivative). The second part of this chapter leads to distributed systems
and is devoted to the modeling of complex systems of a higher order. The
last example of this chapter deals with the problem of the discretization of
partial differential equations (PDE) and presents an introduction to Chaptet
3 which considers the question of dynamic models of distributed systems.

Following the common practice in mathematical physics, this third and
last chapter is divided inlo three sections. The first one deals with mass
and energy transportation systems which are described by hyperbolic PDE
of the Ist order. The second section is devoted to systems with
equalization, which are described by parabolic PDE, while the last one
deals with systems with periodic state changss {described by hyperbolic
PDE of the 2nd order). This chapter provides a completely analytical (and
just partly numerical) study of all the important aspects of the dynamics of
distributed systems with particular emphasis on connections and
comparisons with lumped systems. The last two sections have a
monographical character, but are written in quite a readable way.
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Concerning the notation, it must be said that it was at times very
difficult (impossible, in fact) to avoid using the same notation. symbols
and subscripts for physically different variables. This results from the fact
that this book contains many variables and coefficients from different
technical disciplines which developed independently of each other and
have their own separate terminology and symbols. So it was, for the
present, impossible to be completely consistent in this regard. Finally, it
must be said that in SerboCroatian this bock is called 'Process Dynamics”
and some of the comments in the introduction refer to this title connected
with a course of the same name held at the Faculty of Mechanical
Engineering and Naval Architecture, University of Zagieb, pail of the
undergraduate and postgraduate curriculum.

The book was written for scientists, practising enginesrs and students
interested in the analysis of system dynamics. Experience has shown that
the volume is of special value to analysts and designers of contiol
systems in many disciplines of engineering. The first iwo chapters can be
of great use as a textbook for subjects from the field of dynamics and
conirol systems in university undergraduate courses, while the third
chapter is intended for more detailed graduate study. Having this in mind,
every section of the book ends in many solved numerical examples. This
can be of great use in the continuing education and home-study of all
those who are concerned with this fast-developing field.

Finally, it must be said that no book gets its final form through the
efforts of its author alone. Thete are always many others deserving credit
for stimulation, inspiration, support and help and without whose efforts
bocks would not reach their readers. In the case of this book 1 wish to
extend my most heartfelt gratitude to Professor Tugomir Surina, University
of Zagreb, for his unending support during research in this field, and to
Professor Petar V. Kokotovi¢, University of llinois, for support in the
promotion of the English edition of this book. The extensive and
successful work on the English translation was performed by Ms. Nikolina
Jovanovi¢, whom I also thank. To Ms. Ellen Elias-Bursaé&, M. A., thanks for
her work on the language editing of the English text. The merits for
well-drawn figures and patient typing belong to Zveonko Gigek and
Dragica Spoljar, respectively, as do my thanks. Finally, after everybody
else had finished their work, the exacting job of setting the whole text on
a personal computer and editing was performed by Porde Tasevski, M.Sc.,
for which the writer of these lines is sincerely thankful.
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Naturally, the list of institutions. colleagues and friends who contributed
to the writing of this book is much longer than the always limited space
allotted to such prefaces allows. I will warmly and sincerely thank all of

them in person. Thus this foreword ends.

Let the book begin.

Zagreb, June 1988. The Author
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CHAPTER
ONE

INTRODUCTION

1.1 BASIC CONCEPTS, NOMENCLATURE AND CLASSIFICATION

Until recently, dynamics (from the Greek word dynamis - force. power)
was a clearly defined technical discipline and science, and the meaning
of the word did not demand special explanation. It was the name of a
science which formed a part of the wider concept of mechanics and
studied the spatial motion of a particle or a rigid body due to force. The
foundations of dynamics were Newton's laws, which have since the years
of their establishment also been applied outside the field of classical
mechanics., and in time used more and more in the study of motion of
continua {elastically and plastically deformable bodies, liquids and gases),
which contributed to the development of fluid dynamics, gas dynamics or
aerodynamics, and the theory of elasticity. Differential equations, ordinary
and partial, were and siill are the characteristic mathematical tool used to
desciibe the process of motion. In time, the field of disciplines. in which
differential equations appear in mathematical represeniations, expanded.
This mostly occured in problems of control in various technical and
nontechnical processes - mechanical, electrical, heat, flow, chemical,
physical. biological. sociological and the like. As the field of described
and analyzed processes grew, already existing terms were kept, but their
meaning changed and became more generalized. Today coordinates are
not only the geometrical, spatial coordinates describing the position of a
particle, but all the indicators of the process under observation
(temperature, pressure, concentration, speed). Moreover, when we say
motion, we no lo‘nger mean only displacement or a change of the rigid
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body's spatial coordinates, but any time change in coordinates defining
the state of the analyzed process.

In short, a more extended dsfinition may be given by which dynamics
is the science which deals with time changes (variations) of state, or
which studies the changes of state with time. Its main feature is that time t
is one of, or the only, independent variable in the mathematical model
that describes such changes. If time t is the only independent variable
the dynamics will be described by ordinary differential equations (ODE).
the independent variables include spatial or some other coordinates (for
example, age in sociological processes) besides time, the dynamics will
be described by partial differential equations (PDE).

The subject of this book is mathematical modeling and analysis of
process dynamics. Here we consider a process (from the Latin processus -
progressing, growing) to be an arbittary qualitative and quantitative
change in time. i.e. a time change. reshaping or transformation in quality
and quantity. The word dynamics in the term implies that our interest lies
in the time profile of these changes. their mathematical description and
the analysis of the obtained model.

The word change must be considered in its most generalized meaning,
it can mean changes in the shaft diameter during lathe manufacturing,
temperature and pressute changes at the exit of a steam generator,
density changes in a chemical reactor, an airplane's changes in altitude,
or changes in the shape of plants, changes in human relations and so on.
This short list also shows something else. Each of these processes takes
place in some space. element. object, process unit or plant. Thus it is not
unusual that there are many books with different names that treat, for
instance., the dynamics of objects. the dynamics of systems, or even more
specifically, the dynamics of chemical reactor or energy plants. Their
names include small terminological. but also conceptual, differences and
traps, and we would not get far in an effort to solve them. Here, and for
now, this is not our purpose. In connection with the name of this book, the
following must be said. It was not reached by chance. Moreover, it was
purposely chosen to study the dynamics of specific and different
processes with a unified approach, method and conceptual tools. In
technical devices in which only one process takes place it is correct to
equalized the term of object dynamics with the term of process dynamics.
One of the simplest examples where this is fulfilled is a liquid storage
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tank, in which only the process of storing (accumulating) a mass of fluid
takes place. An indicator of the state in that object is head H, and the
use of the term dynamics of the liquid storage tank or dynamics of the
process of liquid storage will not cause serious misunderstanding.

This is not -the case in more complex technical objects in which
several different processes take place simulianeously with usually unlike
dynamic characteristics. Thus it would, for example, be more correct to
use the term dynamics of (heat and/or of {low) processes in a steam
generator instead of only the dynamics of a steam generator, which is,
incidentally. more usual. In this latter case the impression may be gained
that only one process takes place in the steam generator whose dynamics
we wish to examine, while there is in fact a whole spectrum of
dynamically different phenomena, from the slower processes of heat
transfer on superheater surfaces to the rapid., high-frequency phenomena
of hydraulic shocks in evaporator pipes. (The concepts of slowness and
speed are of relative character, and what we here call fast processes of
hydraulic shocks would certainly not be fast in comparison with many
mechanical oscillatory processes and especially with processes in
electrical circuits.)

Table 1.1-1

PROCESS CLASSIFICATION

according to into

A mutual dependence | |inear nonlinear
of variables

B | parameterchange time invariant time variant
with time

C depgndence on lumped distributed
spatial coordinate

D processing of material | fow charge discrete
or energy

E | randomness of deterministic stochastic
variables
state variable static dynamic

F change with time
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The above definition of a process is obviously somewhat wider than
this book could be expected to cover, and it would be of use to narrow it
down to the field that will be the subject of study here. Furthermore, a
classification of processes according to some of their significant
characteristics can be a good introduction into fields that are to be
investigated in the coming chapters. Besides being electrical. mechanical,
heat, hydraulic, pneumatic, chemical and sc on, each of these processes
can be subjected to a classification like the one in Table lI-1.

What each of these terms includes will be briefly described in the
following lines:

Linear processes are all processes in which the relationships between
process variables of input u, state x and ocutput y can be described by
linear mathematical expression of the following type

Yy=au+a, X' =ax+au+a; X =au +au,+ U+ Uy, (13-

(On the concepts of input, state and output see in the Appendix.)

Coefficients a; are constants, and variables x. x'. y and u are time
variant functions and could, consequently, be written x(t), x'(1), y(t) and

u(t). If the dependence between process variables are as follows

y = aux, x = —ﬁ— . x=/xu , x'=usinx , (1.1-2)

or can be represented by some other nonlinear equations, such
processes will be called nonlinear.
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Fig. 1.1-1 The principle of superposition

In practice most processes are of a nonlinear character. and in order
to facilitate analysis their description is very often translated into linear
form. This will be one of the noticeable characteristics of this book. One
of the key linear properties (the one which has made linear models the
most desirable) is that the principle of superposition is applicable. This
principle can be expressed in words as follows:

if input u; responds in y, and input u; in y, .
then input u, + u, will respond in y; + y, .

This can also be represented graphically, those to whom it seems an
obvious and ever present property might check whether it holds true for
the "simple" nonlinear function y = u?

B

An essential property of time invariant processes is that changes in
output variable y do not depend on the moment in which the input
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function u was given or, in other words, the response of the process is
independent of the moment in which the disturbance between time variant
and time invariant processes.

(4]

1
|
i
{ [
l }
Time | |
invariant l 1
process : }
| |
R V4 :t, V4 :t, (V4 t
| | 1
y : | I
Time : I
{ i
t {
i

variant
process J/‘\ i
|
A\ I
t U b \JS ty \.ﬁ t

Fig. 1.1-2 An illustration of time variant and time invariant processes

It should be born in mind that. viewed through a longer period of time.
most processes show properties of time variébilily i.e. prccesses have the
tendency to change their dynamic properties. The reason for this are the
wearing, ageing. sedimentation. breakdown, and so on, of devices and
equipment in which such processes take place. (A popular example from
everyday life are changes in the dynamic properties of cars. which are as
a rule more and more sluggish from year to year) For the needs of
control, such slow changes can be neglected and most processes can be
considered time invariant. A typical example of a time variant process is
the flight of a rocket, which burns up fusl and suffers great weight loss as
it flies. This loss of mass is no longer negligible, and must be taken into
account in a mathematical description. Consequently, the model of a
rocket flying in a straight line is

CM= F@ . (11-3)
dt
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M(t) %‘;_" « w(t) %”- - F(1), (11-4)

where F is the thrust, M the rocket’s mass. w the speed of flight. The time
variant coefficients M(t) and w(t) are typical of time variant processes.

C

Figure 11-3. shows some simple examples of the differences betwsen
processes that are lumped or distributed in space.

x:x“,Z)

z | 9 r-d -

oy it 2 3

”

ol
°3
X} = Xg = X3 # f{z} Xy ¥ X3 # X3

o

—-—} x=x{t)

, 1 2~ 3 3
——§ ov o A ——
o 3=tz
3=9=8,=92t R A

Fig. 1.1-3 An illustration of lumped and distributed processes

We will treat this point in more detail laler. At present we will only
briefly say that all the examples in which changes in the process
variables are independent of spatial coordinates are considered to be
processes with lumped parameters or processes lumped in space. Where
this is not so. i.e. where some of the variables are not the same at the
same moment in the whole piocess volume, the process is spatially
distributed.
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D

In flow processes mass and/or energy flow through process units in
continuous currents (heat exchangers, flow chemical reactors, rolling mills,
steam generators). In charge processes. on the contrary, flow is interrupted
and such processes usually have three stages - charging process units,
the process itself, and discharging process units (charged chemical
reactors, heat processing of metal, rotational furnaces in the cement
industry). In discrete part manufacturing, the objects that are to be
processed appear in a discontinuous period of time (these are the majority
of manufacturing processes in the metal-working and similar industries, e.g.
wood, plastic and glass working).

E

Deterministic processes are processes in which for a given set of input
variables there is a completely determined set of output variables. The
relationship between input and output need not be unique. but it is
essential for it to be determined. In their static states such processes are
described by algebraic or elliptic PDE, and their dynamics are described
by ODE and/or PDE or integral equations. In stochastic processes, on the
contrary, the influence of random factors is so strong that relationships
between process variables can only be expressed by probability laws.
This division r1efers more to mathematical models than to the real
processes they describe, because no 1eal process can avoid random
influences (noises, disturbances, breakdown). The decision on whether a
process is to be considered deterministic or not depends on how much
influence such random factors have on the way the process develops and
on the behavior of variables of interest. Figure 1.1-4. shows typical process
variable changes in deterministic and stochastic processes.
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unperiodic

periodic

Deterministic process Stochastic process

Fig. 1.1-4 Typical process variable changes

F

It has already been said that processes in which at least one process
variable changes with time are considered dynamic. Thus all processes
where there is no time change of state are static. In the mathematical
sense this means that the time derivatives of all process variables equal
zero. As a rule, a process that is already in a static regime will continue
to develop under stationary conditions if all the input variables are time
invariant, because the principle of causality demands a time change in
the input to result in time changes in internal and output process
variables also. There are, of course, exceptions. One of them is the case
where process has several inputs and where changes in input variables
can occur in opposite directions concerning their influence on internal
and output process variables, as a result of which those variables remain
unchanged.

In modern technical practice, the static properties of devices and
objects in which specilic processes occur are usually shown in the form
of tables, characteristics diagrams, nomograms or in some other graphical
manner (see for example Figs. 2.2-1.2 and 2.2-1.3 for the centrifugal pump
and regulation valve). Such illustrations are obtained as the solution of
one or of a system of algebraic equations or elliptical PDE, which
describe the relations between process variables and ate of great use in
designing complex plants. However, such illustrations do not provide
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answers about the dynamic properties of processes that occur inside such
devices. We will now give a very simple, and under certain conditions
(which is truly of little importance) linear, example to illustrate the
difference between a statically and a dynamically formulated problem or
task. similar to the type encountered in technical practice.

50.7:_49:30 20 <0 Q=03
40}t~
mcd; Heat meda 30 /
exchanger /
201

1ok

0 20 30 40°C 3
Fig. 1.1-8 Diagram of characteristics of a heat exchanger

Figure 11-5. shows a heat exchanger whose inner structure, flow
velocity, coefficient of heat transfer, number of pipes. dimensions and the
like do not interest us now. So, the equation relating output fluid
temperature 9, input fluid temperature 9; and the heat flow Q that is
brought to the exchanger or taken from it can be written

me 8o=mc 1t Q 01-5)
or
8= 8 t—l= O . (11-6)

If flow rate m and specific heat ¢ are constant, (11-6) can be easily
resolved and presénted in the form of a diagram of characteristics. For
m = 1 kg/s and c =} J/kgK, this diagram is a graphical representation of
the functional dependence ¢, = 8( 8; , Q).

For a given Q = 10 ]J/s and & = 20 °C, the diagram of characteristics
gives one and only one point | for which 8, = 30 °C, which is a solution
to the static problem of the heat exchanger. If input temperature
ramains constant and the heat flow increases to QO = 30 ]/s, point 2
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determines the temperature 9 = 50 °C. which again solves the static
problem. Similarly, an increase of 8 to 30 °C, keeping Q constant,
determines 3, = 40 °C as point 3.

Formulated dynamically, the problem is as follows: how long will the
process take, will the temperature increase be fast or slow from 30 C to
50 °C., and what will be the form of this change. The diagram of
characteristics does not answer this question, and anyway there is an
infinite number of such answers. This is because the lime response 8§,
depends on the way in which heat flow Q changes from 10 to 30 ]/s as
time passes, and there is an infinite number of ways in which this can
take place. Figute 11-6 shows only three of all the possible ways in which
heat flow Q can change with time. It also shows three possible responses
to such changes in heating. The solution to the dynamic problem involves
determining (analytically, graphically or by numerical simulation) a
time-dependent function of response 8,(t) for a given Q(t). This, however,
cannot be done with the help of the mathematical model (11-6) since it
rteproduces only the statics of the exchanger. To solve the dynamic
problem a mathematical model of dynamics, or a dynamic mathematical
model must be formulated. The pages of this book are concerned with
problems of oblaining dynamic mathematical models,

] %
30 LI ==—=== 501
El 2.7 - °c
s g vl
’ Vd
10 ‘——'(\3\ ,,r/ 30

Fig. 1.1-6 Output temperature responses

Finally, we will give a survey (Table 11-2) of the relations between the
spatial and time properties of processes and their corresponding
mathematical notation and representation.

This ends the short classification of processes according 1o their
noticeable properties. Of course, a classification could also be carried out
in some other way or according to different criteria. Let that remain for
narrower, mote specialized works. Here we must mention that we will
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analyze, in the following chapters, exclusively the dynamics of both linear
and nonlinear. time invariant. lumped and distributed. continuous,
deterministic processes. Static (stationary) states will be of interest only
inasmuch as they are necessary for specific purposes (for example, in
linearization).

The solution of dynamic problems has been gaining increasingly in
importance, which has made insight into the dynamic properties of
processes an unavoidable and necessary part of engineering and
scientific practice. When we say this, we do not mean empirical
knowledge of dynamics in the sense of acquaintance with the facts and
phenomena that take place inside plants in unstationary conditions
(although this is useful and desirable). What we are referring to are exact
mathematical expressions, equations and systems of equations. in short,
mathematical models describing the dynamics we are interested in. In this
last sentence, as indeed on the preceding pages also, we used the
concept of a mathematical model several times. This term will also be met
on the following pages. It is, therefore, necessary to say several words on
the problem of the model, the way in which it is built, the forms it comes
in. its properties, and so on.

Table 1.1-2
PROCESS MODELS WITH
LUMPED PARAMETERS DISTRIBUTED PARAMETERS
¥i(x, y. 2) = {(x, y. 2)
1 algebric equation - onedimensional {
STATICS representations: ODE =f(1)
T tables T
I nomograms - multidimensional I
M characteristics eliptic PDE M
E E
- sytem of Ist-order ODE hyperbolic
DYNAMICS | - 1 ODE of n-th order PDE = f(t)
- several ODE varying parabolic
order
.—— ———————— SPACE
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In engineering a model is considered to be a material or an idealized
(symbolic) object which substitutes or represents another existing or
imaginary object of interest. The basic condition that every model must
fulfil is that conclusions about the properties of the original can be drawn
from the behavior of the model.

On the pages of this book we are going to treat only one subgroup of
all the possible groups of symbolic models - the mathematical model,
about which the following can be said:

If the relations between process variables and the geometrical and
physical properties of the space in which a process develops can
be mapped onto a mathematical structure. then such a
representation is called a mathematical model. A model can also be
said to represent a symbolized hypotheses about the way in which
the process under investigation will develop, and its analysis
(examination and solution) gives answers about the behavior of the
real process.

The model can be obtained in two ways: theoretically (also called
deductively, analytically, based on the first, natural, principle)} or
experimentally (practically, empirically). The first procedure is called
modeling and the second identification, and here are their shortest
definitions:

Modeling is the process of model building using theoretical
means, i.e. the fundamental natural laws of the conservation of mass,
energy and momentum. Identification is an experimental process
of model building using the measured values of input and output
variables of the real process and its model. The error between
process and model response should be minimised by parameter or
structure change.

The pages of this book will show and treat only the theoretical method
of formulating a mathematical model, but we will nevertheless present
some basic features, advantages and shortcomings of the process of
modeling (M) and the process of identification (I).

In M, model structure results directly from natural laws and possibly
from some necessary neglection in the procedure of model building
In L structure must be predicted in advance. M reproduces the
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relations between input, output and internal process variables while
I usually results in a "black box" type of model, i.e. a model that
teproduces only the relations between input and output. In M,
model parameters are directly linked with physical values and
properties and in X, the parameters are pure numbers, unconnected
with physical values. A model built by M can be used for many
operating regimes of the same process and also for related
processes about whose process variables little is often known. I, on
the contrary, gives a model only for the specific operating regime
for which measurements were carried ocut and for that particular
regime the description is reliable. In M, a model can be formulated
for a process that has not yet been 1ealized in practice and is still
in design stage. Moreover, which is sometimes of particular
importance, it is possible to build a model to examine the dynamics
of -breakdown processes in plants (malfunction of electrical pumps,
loss of cooling medium in nuclear reactors, burns in the wall of
a chemical reactor and the like). The I procedure can only be
applied to existing objects, and it is not convenient to simulate
emelgency conditions on an object with the purpose of camnying out
identificational measurement. To make use of M, all the basic
internal processes must be known and mathematically describable.
This is not a demand for X Finally, once a program package for I
is prepared. it can quickly and easily be applied to obtain models
for various processes. In the case of M. the procedure must be
started from the very beginning every time and takes up much more
time. In practice, however, both these methods very often
complement sach other.

Similarly as in process classification, according to the properties of the
process under investigation, models can be either linear or nonlinear, time
variant or invariant, continuous or discrete, stable or unstable, to describe
system dynamics with lumped (then they are in the form of ODE) or with
distributed parameters (PDE).

However it is important to realize that a process or an object can have
more than one dynamic model. 2 hierarchy of models in fact
exists, from those that are dynamically the simplest, of the O-th order
(which describe only stationary states but which can be very
complicated), to very complex dynamic models of a high, and if the
process is described by PDE, of infinitely high order. Many factors
influence a model's degree of complexity, the most important being its
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final objective and the technical-economic and human limitations in the
procedures of its formulation and solution. This book will show how to
obtain dynamic models for "pure and simple” processes that take place in
objects with a simple geometry, which will make the procedure of modsl
building somewhat shorter and more condensed than the one that
generally holds for model building. This general procedure can. in
principle. be divided into a sequence of stages as delineated below:

1. Problem definition, in which the objective, goals and
purposes of the model are defined considering different constraints
- accuracy, simplicity, human, economical and computational
constraints.

2. Process or object analysis, with the purpose of determining
boundaries, separating the process from its environment, defining
input, output and internal state variables, dividing the process or
object into simpler and elementary subprocesses or parts.

3. Assembly of conservation equations for mass (M) and/or
energy (E) and/or momentum (I,,). which have the following general
- form:

flow rate (M, E, I); - flow rate (M, E, Im)o *

produced _dM. E Iy) ]
* absorbed flow rate (M. E. Im)y __m_dt v .1-T)

Subscript V shows this equation to be valid for a specific and
constant volume within which the accumulated M and/or E and/or
In are considered equal and homogeneously distributed. In a
lumped parameter process this is the whole process volume. In
spatially distributed processes the assumption of equality holds for
an infinitesimally small part of the volume dV. The third member on
the left side of equation (11-7) has a very generalized meaning and
represents, in the equation for energy conservation for example, the
work incoming or outgoing from the process volume. This work is
then divided into the work of the pressure force and so-called
mechanical labor. If the controlled volume changes, a member
describing this change must also be added to (1.I-7).
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4. Assembly of physical-chemical equations of state
relating process variables (ideal gas, Bernoully equation, Hooke's
law). Assembly of phenomenological equations describing
phenomena (heat transfer, Fick's law of diffusion. Arrhenius' law of
chemical reactions and so on).

8. Solution and investigation of the mathematical
model. Analytical solution (which is rarely possible) or simulation
on computers. Nonlinear models are either simulated directly, o1
they are first linearized and then linear analysis is performed
(modal analysis, stability, sensitivity, controllability). As a rule
discretization is used to teduce PDE to a system of ODE.

6. Yesting and verifying obtained results and comparing them
with those that were intuitively  expected. Discovering
inconsistencies and unexpected model behavior (for example, if
heating were to result in a decreasing fluid temperature. or the
like).

7. Validation of the model - experiments are conducted with
both the model and the modeled process to establish that the
model predicts actual process responses to a satisfactory degree. If
it is impossible to experiment on the whole object, its individual
parts must be tested. I necessary, after the results have been
compared, assumptions used to build the model, its structure and
parameters, are changed.

8. Applying the model in accordance with the purpose it was
built for.

Models in this book will as a rule be represented by a system of
differential and algebraic equations. The aim of the book is to show the
manners and methods of building a mathematical model of the dynamics
of a process, the analysis of such models, and the relations between the
real physical characteristics of a process and formalized mathematical
parameters.

The following chapters. however, will, in most cases not show the
procedures for solving particular differential equations or their analytical
and graphical solutions. The reader is referred to the last pages of this
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bocok., to the Appendix which contains table with differential equations,
transfer functions (the relation between Laplace transformations of output
and input), transient functions (response, or change of output, in the case
of a unit step change of input), and the zeros and poles of basic dynamic
behavior - proportional, integral and derivative. In the following chapters
we will classify and refer to these typical and common dynamic properties
of various processes, which will soon show the need and advantage of
frequent reference o that table.

The pages of the Appendix also contain a basic survey of relations
between differential equations and notation in the form of matrix equations
of state space, a section on problems of linearization, and pages with the
basic mathematical transformations for functions that are met more often in
this book. It is believed that all this may be of great use to a reader
coming into contact with these problems for the first time, or after a long
period of time. Therefore, before turning to the following chapter, it would
be of use to look thiough the pages of the Appendix and renew old or
gain new information., and get acquainted with the basic concepts and
symbols that will be used throughout this book.

1.2 DYNAMIC VARIABLES AND COEFFICIENTS

An analysis of the dynamics of various processes 1eveals in all of them
the existence and presence of common dynamic variables and cosefficients
(admittedly under still different names and completely unlike from the
aspect of dimension). On the pages of this book they will be called and
noted down as {ollows:

- dynamic variables

accumulated (stored) variable AV
flow F
effort (potential) E

- dynamic coefficients
coefficient of capacity - capacitance
coefficient of resistance - resistance R
coefficient of inertia - inertance, inductance

9]

L]
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In most cases these terms and notation will mean the usual variables
and coefficients, but some situations will demand that the reader accepts
previously unusual terminology and concepts. This effort will, however, be
rewarded by many benefitls and advantages., which was why we insisted
on searching for and recognizing common properties and introducing the
mentioned variables and coefficients. The main reward is the possibility of
perceiving dynamics integrally. as a science ireating changes of state
with time. The common properties of dynamic processes will manifest
themselves in the equivalent forms of their mathematical models. and in
responses that will show selected output variables for unit step, or some
other, changes of certain input variables. According to such responses we
will classify them into typical proportional, integral and derivative
properties, which are given in the last table of the Appendix.

Before giving a tabular survey of the meaning of dynamic variables
and coefficients, we must say something about their basic characteristics.

As a rle and accoiding to the character of the process under
observation, an accumulated variable will be the mass and/or the energy
and/or the momentum (the momentum in a process with inertial properties)
that exist within the space the process is developing in. (Although this
book will analyse processes occurring within a space of rigid and time
invariant geometry, all the discussions and models that follow can be
repeated and performed under conditions of change in the control volume.
In such situations, when the equations of conservation are being
formulated, it is necessary to include members - which do not exist here -
that also describe those changes in the process space volume.)

It will be shown that time changes of accumulated variables are the
result of unbalance in mass and/or energy and/or momentum flow, and
that changes of effort variables result from changes of accumulated
variables directly and simultaneously. The flows themselves are either
externally imposed variables., and thus independent of the processes
taking place in the process space, or they are variables that depend
directly on effort variables. It will be easy tc check in the following
chapters the scenario of causal relations and links between specific
variables described here, particularly in examples where the graphical
1epresentations of variable interrelations are given in the form of block
diagrams (see for example Figs. 21-3.3, 21-2.7, 2.3-2).
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In this book we will always t1ry to show mathematical models in the
form of matrix equations of state space. In the case of noninertial
processes it is, therefore. convenient to select state variables x so that
they are accessible, measurable process variables. As a rule, an
accumulated variable is not an easily and directly measurable variable,
but each of its changes is simultaneously reflected in the easily
measurable - variables of effort. In such noninertial processes (I=0) we
consequently select effort variables (pressure P, head H, concentration c.
tension u, temperature & and the like) as the variables of state x. In
inertial processes (flow, mechanical and electrical) there is duality in
selecting dynamic variables, as Table 1.2-1 shows, of which more will be
said in detail in Section 2.4.

Besides the three mentioned dynamic variables which are present and
noticeable in all the processes, it is also necessary to introduce into a
process with inertial properties the dynamic varjable of
acceleration K. This variable is related to the variable of flow F in the
following manner:

dF
A = —at— N (1-2'1) -
or t
F= [Adt . (12-2)
o

In its classical meaning the dynamic variable of acceleration A
originates from mechanics, where it is written a and defined by a = dw/dt.
In analogy with this, in other processes the name of acceleration has
been given to the time gradient of flow F.

The concepts of coefficient of capacity C. resistance R and inertance I
originate from electrotechnics, but they can also be shown to be present
in other disciplines. In all the investigated processes these dynamic
coefficients will be defined as follows

C- AV accumulated variable 12:3)
E effort
R = E_ effort 12-4)
F flow
t
[ = E | E effor _ _eftort . 125
4r A gradient of flow acceleration

e
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The above equations are true when the relations between
dynamic variables AV, F and E are linear. In processes in which this is
not so, i.e. when the relations between AV, F and E are nonlinear, C, R
and | will, in a specific operating regime, be calculated from the quotients
of small changes of dynamic variables around that operating regime.
Expressed mathematically, in nonlinear processes the following
is true

C= dAvV i (1.2-6)
dE
- _dE .
R=—55. (1.2-1}
- dE dE (1.2-8)

aSk) dA
The equations (1.2-3) - (1.2-5) can also be formulated as follows.

The coefficient of capacity C equals the change in the accumulated
variable required to make a unit change in potential.

The coefficient of resistance R equals the change in potential
required to make a unit change in {low.

The cosefficient of inertia | equals the change in potential required
to make a unit change in acceleration.

Fig. 1.2-1 Square of state or dynamic square
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Everything that has been said so far shows that the relations between
dynamic variables and coefficients are completely determined. This can
also be represented graphically (to make them easier to remember, but not
only for that reason}) in what is called here the square of state or
dynamic square, and is shown in Figure 1.2-1.

Dynamic variables AV, F, E and A are assigned to the corners of the
dynamic square, and the dynamic coefficients I and C to its upper sides.
The vertical diagonal has the coefficient R. and the bottom two sides
show the relations between variables A, F and AV.

The adjective dynamic has not been used so many times in this
chapter by chance. The reason is that all dynamic variables are as a rule
time variant functions and they should actually be written AV(t), F(t), E(1)
and A(1). Of course, theoretically those variables can be time invariant,
constant, in some process. But then the problem is no longer dynamic in
character and falls outside this book's field of interest. In everyday
engineering practice the design, calculation and construction of various
devices, process units and plants is in principle based on the assumption
that those dynamic variables are truly invariant. But since it is obvious
that in most cases this is not fulfilled (and especially where
quality-demands for the finished product are high), a variety of
measurement-regulation-automation equipment is added and built into such
objects with the purpose of preserving the estimated operating conditions
used in calculations in cases of always present disturbances or noises.
These are the names for deviations from calculated, nominal values.

After linearization has been carried out in nonlinear processes.
dynamic coefficients C, R and | are constant values and depend on the
operating point in which that linearization was carried out.

Finally. we must take a look at Table 1.2-]1 which shows dynamic
variables and coefficients for a great many different processes, and the
units used to express them. The values shown here are results, and they
originate from all the following pages of this book. This table has many
interesting points, but one of the things it is useful for noticing is the
analogy of different physical variables. Thus, for example. the
accumulated mass of gas in a tank is analogous to the amount of heat
energy in the walls of a heated pipe, to the displacement of a rigid body
aleng its path of motion, or to the momentum of a particle of liquid along
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a streamline.

We believe that references to Table 1.2-1 will be frequent as the
chapters of this boock are read. In that case we must turn the reader's
attention to instances when 1elations between dynamic variables are
nonlinear and when numerical coefficients appear as the 1esult of
linearization (which is, for example, often the case with the coefficient of
1esistance). Also, the variables and the coefficients we selected here are
not the universally and only possible ones. For example., in the first
column, AV could also have been the volume the fluid takes up in the
tank, and the flow could have been the volume flow instead of the mass
flow. Then C would also change and would equal area A. It is similar in
the case of R and I.

If the preceding and all the following pages help and enable the
reader to recognize and understand the dynamic properties of the process
and the cobject, then this boock will have {ulfilled its purpose. lf, therefore,
the reader is enabled to:

- recognize the same dynamic properties in various processes,

- learn to formulate equations of conservation and. what is of
special importance, develop his skill in selecting phenomena to
neglect (phenomena that are of less importance for the task before
him),

- foresee the consequences of assumptlions. and realize how they
will be transformed into the structure and the parameter values of
the mathematical model,

- recognize the (usually present) nonlinear character of the process,
and in connection with that accept the advantages and benaefits,
but also the shortcomings and limitations, of procedures of
linearization,

- comprehend relations between spatially distributed processes and
those that are lumped. i.e. if he learn methods for reducing models
or the ways and procedures for transforming PDE into systems of
QDE, to retain the knowledge and a clear feeling for what he loses
and what he gains in dynamics analysis,
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- 1elate the meanings of coefficients and the parameters of the
mathematical model o1, 1o be more pirecise, the sigenvalues, vectors,
poles, zeros and other mathematical characteristics with the real
geometrical and physical parameters of the process under
observation,

- accept and get closely acquainted with the concepts of dynamic
variables and coefficients, time constants, natutal frequencies,
proportional, integral and derivative dynamic properties, inertial and
noninertial processes, and periodic and unperiodic processes, the
effort that has gone into the writing of these lines will be justified.

On the following pages an analysis of spatially lumped processes
begins with the simplest example of the liquid tank. Gradually, turning the
pages of the book, more complex processes will be analyzed, and that
inductive path - from the simple to the more complex and
from the specific to the general - we will ty to preserve within
each chapter, and in the book as a whole.
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CHAPTER
TWO

LUMPED PROCESSES

Lumped processes are all processes in which the spatial dependence
of the variables under consideration can be neglected, i.e. in which a
change in those variables is considered equal and simultaneous
throughout the volume for which the laws of conservation have been
established. It is obvious, however, that due to the finite speed at which
distutbances and variable changes propagate, all processes are in fact
distributed in space. In the analysis of every individual process (and in
establishing differential equations describing its dynamics) we must, thus,
question how correct an analysis is if it neglects this spatial dependence.
Because of the great diversity and multitude of completely different
devices and plants, it is impossible 10 give a general crilerion valid in all
cases to tell us when lumped paramelers are a correct substitution for the
processes occuning in such objects. Nevertheless, the following definition
is sufficiently wide and imprecise 1o serve as a guide in most cases:

Every process, in which a change in the state variable under
consideration for an order-of-magnitude takes longer than it takes for the
disturtbance of that state variable to propagate throughout the whole
process volume, can be considered a process with lumped variables.

On the following pages we will show how to build a mathematical
model for the dynamics of physically different processes. We will show
that the mathematical forms are similar and that the processes themselves,
in spite of differences between them, all show the same or similar dynamic
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properties. What will be fulfilled without exception, however, is that all the
models will be in the form of ordinary differential equations (ODE) and this
form of presenling dynamic behavicr is one of the key characteristics of
all lumped processes.

At the very beginning we must stress the following. Most technical
processes are nonlinear and described in the form of nonlinear ODE. The
direct consequence of nonlinearity on the dynamics of the process is that
its dynamic properties change depending on the operating point (on the
conditions under which the process is developing). In this book, however,
we will always try to linearize the differential equations and then transform
such linearized equations into matrix notation in the form of state-space
equations or transfer functions. This nartows down the field of values
covered by the results (such models are valid only for specific operaling
points), but we gain very much from the possibility of applying the
powerful mathematical tools developed for linear systems. In the following
examples we will point out the changes in dynamic propeities resulting
from the nonlinearity of the process, and also show in which field of
values the input variables and state variables can change, for the
linearized models to still be sufficientiy close to the 1eal process.

From the aspect of process linearily and the symbols we will use in
this book. the following must be said. In all the cases when the differential
equations obtained are linear, they can also be considered equations
of the deviation of state, input and output variables from some
initial steady state. When we derive transfer funcilions, if we set the initial
conditions equal to zero, this means thal the initial variable deviations
from the steady stale equal zero. The transfer functions and matrix
equations of state oblained in this way are valid both for absolute values
of variable change from the initial state equal to zero, and also for
variable deviation changes fiom the initial steady state. In these originally
linear cases we will, therefore, not especially emphasize this linearity by
introducing the deviation symbol beside the variable symbol (for example,
we will not write am, AH, AP, .., but just m, H, P, ..).
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A. BASIC PROCESSES

2.1 MASS STORAGE

Plants often contain liquid. gas and steam tanks in which the liquid
level or head H, or the gas (steam) pressute P, are of everyday interest,
The technological 1easons for keeping these values constant differ.
Sometimes a constant H is required 1o keep the liquid mass fixed for the
maintenance of a reaction taking place in the tank, another time this
insures constant liquid supply under fixed pressure into other parts of the
planl. Sometimes the tank decreases vibrations of the liquid mass in pipes
(decreasing water-hammer effects) or, like in steam generator drums,
insures the supply of the liquid phase into evaporating and the steam
phase into superheater sections. It is similar in the case of gas (steam)
tanks in which a constant pressure P insures the accumulation of a certain
mass of gas (steam) or its uninterrupted supply to other parts of the plant.

Although liquids and gases are media with essentially different
properties, it will be shown that the dynamics of their storage in tanks is
similar, and that the physical meaning of the liquid level H is equivalent
to the meaning of pressure P. Both variables show the amount of mass,
liquid or gas. stored in the tank. Thus the mathematical models for both
media will be obtained by formulating only one equation for the
conservation of mass.

2.1-1 LIQUID STORAGE TANKS

Example 1 Controlled inflow and outflow of liquid

Consider the tank in Figure 2.-l11, into and out of which controlled
amounts of liquid are pumped, m; # m; (H). myz * my(H). Derive a model to
describe the dynamics of the change in liquid level H. The tank is
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cylindrical, A = const. The compressibility of liquid is neglected,
p = const.

Fig. 2.1-1.1 Tank with controlled flow m; and mg

The equation for the conservation of liquid mass in the tank is

dM dH

mj- Mo = T = Ap—dT— . (2!‘11)
dH _ 1 1
iy v ey v @11.2)

This is an ordinary linear DE of first order with constant coefficients.

{In these, and in many following., equations we will not stress every
time that the variables H. m; and m, are time functions H(t), mi(t) and
my(t). Since the whole book treats dynamic processes this is always
implied, and to make notation simpler this tlime-variability will not be
specially noted.)

In the steady state, and that is the state where there is no change in
head H, it must be valid that dH/dt=0, which from (2.1-1.2) yields

m=me . (21-1.3)

Since H does not influence the mass of liquid flowing through the tank
(the functions m(t) and my(t) are arbitraty and exiernally imposed), the
tank shows only properties of mass storage, and the measure for that
accumulation is expressed in capacity constant C

C=Ap. (2.1-1.4)
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A more detailed explanation of the concept of capacily constlant C is
given in Chapter 2I-2 in the equations (2.1-2.39) - (2.1-2.44).

The tank thus shows "pure" integral behavior. If equation (21-1.3) was
not satisfied, the liquid level H would converge towards a theoretically
infinite value (m; > my) or to zero (mgy > my) .

All processes in which the stored value (mass, energy. momenium} does
not influence inflow and outflow (mass. energy and momentum flow) from
the accumulation-process volume show these integral properties.

It is not difficult to transform Equation (21-12) into a matrix DE of state
space

m
[HY = [O] [H] + [}\p --—i—p— [m'] ‘ (21-15)
o]

X'=KX+BU

Since only one mass-storage tank is present, the system matrix A is of
first order. As (21-15) shows, it is also a null matrix because the liquid
level H has no feedback action on m; and m, and thus also, according to
(2)-11). on the rate of its own change. The eigenvalue of matrix & is zero

r»=0. (2.1-1.6)

In proportional systems of the first order and systems with integial
properties the eigenvalues of system matrix R have distinct physical
meanings (see also Equation (2.-1.25). Their dimension is s™'
1elated with the time constant T in the following manner

, and they are

T=— . (21-1.7)

We know that the time constant T is a measute for the rate of change
in the variables observed after a unit step disturbance u(t) = 1 for t > O.
In proportional systems the response reaches about 95% of its new steady
state already after 3 T. For the tank with controlled m; and m, Equations
(21-.6) and (21-LT) yield an infinitely large constant T. Therefore. if
Equation (2.I-1.3} is not satisfied liquid level H will reach its new steady
state after an infinite period of time, or, in other words, the liquid level H
will not reach a new steady state in a finite period of time. This property.
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that an eigenvalue lies in the origin of the s-plane, characterizes integral
processes.

In the following example we will show that this tank showing integral
behavior is in fact a boundary case of a tank of proportional character, in
which a f{inite change in liquid level H does not influence the amount
flowing out of the tank m,. It will be shown that in this boundary case the
resistance to outflow R becomes infinitely great.

Example 2 Free outflow of liquid

Formulate an equation describing unsteady changes in water level H
for the tank in Figure 21-1.2. Inflow is contiolled by a pump and outilow is
free, through a contiol valve. All the assumptiions from the preceding
example are fulfilled here also. except that m, is no longer an imposed
function, but depends on H.

m,lt}
Allt)

Fig. 2.1-1.2 Tank with outilow through a control valve

The equation for the conservation of mass is the same as (2.1-1.1)

mi- me = Apgc“‘i . (21-1.9)

In the technically most usual case of turbulent flow through pipes.
orifices, valves and fittings, we can apply the quadratic resistance law.
According to this law, pressure drop is proportional to the square of flow.
For outflow through a regulation valve, this law is usually shown in the
following form

Mg = KV Aopvng (2.1‘1.10)
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The constant K, is given for every valve by its manufacturer, and A, is
the valve's varying cross-sectional area. For a specific liquid (¢ is known),
Equation (21-110) can be shown in the form of functional dependence

my = mo(Ag.H) (2.1-1.11)
Substitution of (2.1-110) into (2.1-1.9) yields

dH
AOT + KyAgeY2gH =m; (21-112)

Equation (21-112) is a nonlinear ODE. Its nonlinearity is the resull of
flow through the valve and is not included only in fH_bul also in the

product Aoy/H.

The steady state is determined by

m = M, = KyAgey2gH (2.1-113)

To linearize (2.)-112) we will differentiate it and replace infinitesimally
small deviaticns df by finite deviations Af. The nonlinear ielations are
shown in (21-110}, whose differentiation yields

dm, = 3-23@0 + SB2-dH (21-114)

The values of the partial derivatives should be taken in the steady
state in which linearization is performed. Equation (21-113) yields

m
Ky = —2 (2.1-115)
v Iop 2g

Referring to (2.1-118), after differentiation (2.1-1.13) yields

._Z%o_ = _;‘9_ = Ka . (2.-1.16)
[o] [
_'j%o_ - _ZmHQ— - % (21-117)

Amg = J‘f‘fmo + —;“ﬁ—AH (2.1-118)
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If we make use of these last expressions, equation (2.-112) gets this
linearized form for variable deviation from the steady state

daH m N i
Ap TR —zrf—AH = Am; —K;'—AAO (2.1-119)
[S—) g_..i.._a
Cc

R
The resistance R is defined as the ratio of effort change to flow

change. In view of (21-117). we can write
d8 | 2B

R = —= — 2.1-1.20
dmo Mg ( )

Considering the alrteady introduced capacitance C, (21-119) can be
wrilten

daH

&

+ AH = RAm; - RKatA, . (2.1-1.21)

The constant T has the dimension of time and is thus called the time
constant. lis analysis leads to interesting conclusions

T=cr=2Ae _, M _or e (21-1.22)
mg m,

The time constant T, is really the ratio of the total mass stored in the
tank in the steady state to the mass flow through the tank

T, = M _ stored (accumulated) mass (21-123)
Mg mass {low 1ate

In the form of state space matrix equations, (2.1-1.2]) becomes

1 1 1 K Am;
[aHT = [-=][aH] + & 'E:A] [AAO] (21-1.24)
X'=AX+BU

The eigenvalue of the system matrix A is obtained by solving the
determinant (K-)X=0, whence

S ;
A= (21-125)
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Equation (2.1-1.25) confirms the already mentioned relation between the
eigenvalue and the time constant in (21-1.7). Here it would be useful to
remember and point out that the preceding example, in which the process
of mass siorage was integral, is really a boundary case of this example.
From (2.1-1.20) we can therefore, write

dm, = %—H . (2.1-1.26)

The demand for mg not to be a function of H really means that
changes of liquid level dH will not result in changes of flow m, ie.
dmo=0. This is possible only if the resistance., as defined in (21-1.20). is
infinite, From T = CR it then follows that the time constant T is infinite, and
the eigenvalue of the system matriix A is zero,

If H is a contiolled variable, i.e. a variable of interest. the output
equation is

[aH] = [1] [AH] + [0 O] [Am‘] (21-12T)
rhg
Y:=CX+DU

The matrix I is a null matrix, because there is no direct influence of
the input variables on liquid level H.

The choice of sels of state or output variables is not unique and in
order to show that let us now consider an example where we can vary
the selection of output variables, resulting in changes of the output
equation. Let the output flow Amy be the controlled (output} variable. The
(2.1-114), (2.1-1.16) and (21-117) yield

[Am,) = [EEH—O] [AH] . [o %"-] [ir:'] (2.1-128)
0.
Y=CX+DPTU

If there is no outflow control valve that can influence the liquid level
H through changes of its outflow cross-section A, then we must put AA,=0
in all the preceding equations. Consequently, matrices B and D and
vector U change their dimension - the matrices lose their last columns and
the vector U the last line.
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If the Laplace transformation is applied to (2.1-1.21), using (2.1-1.29) we
can show the dynamic relations beiween specilic variables with the help
of block diagrams.

AH(s) = - 2 aH(s) + Boams) - XAR Ap (s) . (21-129)
Ts Ts Ts
A r~0am [y aM 1 &H
A 5 T
amg
AAo + \
KA ®

Fig. 2.1-1.3 Block diagram for a liquid storage tank

To conclude, one of the basic properties of processes that show
proportional behavior (which is contrary to the properties we met in
processes with integral behavior) is thal the variables stored in them
(mass. energy. momentum) show feedback action proportional to
themselves on the flows (M. E. I, ) entering or leaving the volume
observed.

Example 3 The tank under pressure

We will analyze the dynamic behavior of liquid level H for the liquid
storage tank shown in Figure 2.1-1.4, which is in contact with other parts of
the plant and which has constant pressure Pj, in the air space. All the
other assumptions from the former example are fulfilled here also.
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Fig. 2.1-1.4 Closed tank under constant pressure Pj,

The law for the conservation of mass is the same as in the preceding
examples, i.e. like in equations (21-11) and (2.-1.9). Differences appear in
the equation for ocutflow

Mo = KyAoor/ 2gH + 5: . 8P = Py, - Pout (21-1.30)

If we inttoduce the height of liquid Hy, as an equivalent of the
pressure sP

2L - 2gH, (2-1.31)
equation (2.1-1.30) becomes

m, = KyAgey2g(H + Hp) . (21-1.32)
In practice, two boundary cases are possible:

a) Very high pressure Pj,, i.e. Hp >» H

Since the influence of H on the amount m, can be neglecied. Equation
(21-1.32) now becomes

Mg = KvAopvngp . (2.1'1.33)

Since my is no longer a funclion of H, i.e. of the mass stored in the
tank, we can expect the tank to have integral properties in this case also.
Truly, (2.1-1.9) and (2.1-1.33) yield

A"% = m - KoAo . Ko = Kvey2gHp (2.1-1.34)



35 CHAP.2 LUMPED PROCESSES

Ko is constant because Pj, is kept constant in the air space. Equation
(2.1-1.34) is analogous to (21-1.2), except that the second term on the right-
hand side has changed its appearance slightly. The tank will show
integral properties and will retain them as long as initial assumption Hp »>»
H is fulfilled.

b) Pressure 3P is of the same order of magnitude as liquid level H, i.e.
3P = 2pgH.

In this case all equations in Example 2 hold, except that H" must be
insented in all the expressions under square 100ts instead of H, and in the
linear model AH" must be inserted everywhere instead of AH .

H" = H+ Hp . (21-1.35)

AH = aH (2.1-1.36)

Now the tank behaves as a proportional system of the first order and
its dynamics is described by Equation (21-1.21), ie. by (21-1.24) and
(2.1-1.27), except that in this case 1esistance R and the time constant T will
be larger because H" is larger that H.

In all the preceding examples the tank was cylindrical and placed
perpendicularly on its base, so that the cross-sectional area A did not
change with changes in head H. Very often tanks are spherical or conical,
or cylindrical but placed horizontally (tanker trucks). In such cases the
assumption A = const. is no longer fulfilled and the tank's cross-sectional
area depends on the liquid level, A = A(H). The approach 1o analysis and
the methods remain the same, except that nonlinear forms of functional
dependence on liquid level now appear in equations for stored mass.

Example 4 Tank with variable cross-sectional area

Consider the horizontally placed cylindrical tank in Figure 21-1.5, for
which an equation describing unsteady changes in liquid level H must be
formulated. If the tank is filled with kerosine up to the top and the
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completely open valve (Ky = 0.6) has the cross-section A, = 0.0l m? , find
the time necessaiy for all the kerosine to flow out D = 2R = 26 m, L = 12
m.

1 = yH(2R-H) (21-1.37)

Fig. 2.1-1.6 Horizontal cylindrical tank, A = A(H)
The equation for mass conservation is in the usual form
m; - me = S (21-1.38)

If the liquid level changes by dH, the amount of stored mass dM is

dM = LA(H)o = Lp21dH , (21-1.39)
dM = 2Lpy/H(2R-H) dH . (21-1.40)

If we substitute dM from (21-1.40) into (2.1-1.38) and apply Equation
(2.1-1.10) for my, we get

2Lo/HZRH) 3—? + KyAoey2g yH = my (21-1.41)
[
aI(H)

This is a nonhomogeneous nonlinear ODE. Nonlinearity is contained in
the square root and in the product a,(H)dH/dt.
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For.the second part of the problem we must substitute m; = 0 into
Equation (2.1-1.41) and transform it into a form suitable for integration after
which we get

D
fdt _ JZL{H(ZR-H) g - _4LDYD
o KeAoy2gH 3AcK,y2g

°
t = 2520 s = 42 min

Note that the same amount of time would be needed for the outflow of
water, alcohol or any other similar liquid, because liquid density p does
not appear in the final expressions.

Example 8 Tank with variable cross-sectional area

Consider the tank shaped like a tiuncated cone and completely filled
with water, shown in Figure 21-1.6. We must calculate the time needed for
all the water to flow out of it. D, = 08 m, D, = 03 m, Hy, =1 m, d = 0.03 m,
u = 0.62.

- O
£ %J. AlH)
x
I
——me

o]
d
D;
4 mglt)

Fig. 2.1-1.6 Tank shaped like a truncated cone, A = A(H)



SEC. 2.1 39

The equation for the conservation of mass for m; = 0 is now

au

g = Mo - (21-1.42)

2
dM = A(H)AH = o-[D; + (D, - DI J'aH (21-1.43)
m

If we substitute (21-1.43) and (2.1-1.10) (the valve coefficient K, has been
replaced by the outflow coefficient u ) into (21-1.42), and arirange the
variables, we get

Hm n H 2
o7 D2#(D-D2) | o
t = J 4 5 Hm dH = -2 ?"‘ (3D + 4D,D, + 8D,)?
3 upd_4ﬁ_ IgH 15d%uy2g

(21-1.44)

=l94 s = 3 min 4 seconds .

Similarly as in the preceding example, ! does not depend on liquid
density o here either.

The upper example of a tank shaped like a truncated ccne is a
typical nonlinear case and also a simple process in which an
understanding of the basic dynamic properties does not presen! great
difficulties. Thanks to thai, on the Ifollowing pages we will use this
example to show one of the basic characteristics of nonlinear processes -
the dependence of the dynamic properties (which are expressed in time
constant T in proportional systems of the first order) on the operating
(steady) state.

DEPENDENCE OF DYNAMIC PROPERTIES ON OPERATING STATE

One of the very important properties of technical devices and planis is
that their dynamic propeities are not the same throughout the whole range
of operation. This is true of completely different processes and is
independent of the system order, i.e. of the number of energy, mass and
momentum storage elements. The exception are the rare processes with
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“purely" linear behavior. The above-mentioned dependence does not
occur only in technical, but also in sociological, biological and other
processes. (The example of an athlete warming up before his turn and
preparing to bring his bodily and mental "system" into peak operating
condition in which he can act and react faster, more dependably, strongly
o1 precisely, is only one of the many everyday nontechnical examples of
how changes in operating state affect the dynamic properties of the
process.)

In proportional systems of the first order, like the ones that have
appeared so far, the measure and the characteristic of those dynamie
properties is'in the first place time constant T. In this last example we
will, therefore, show this time dependence on the operating (steady) state
in which linearization was performed. It will be useful to bear in mind the
results shown in the following lines when we analyze the dynamics of
completely different or more complex processes.

For the case of m; = 0 the differential equation describing
nonstationary changes of liquid level in the example of Figure 21.-1.6 can
also be written in this way

pA(H)%— ¢ wohoY2gH = m; . (2.1-1.45)
e A —

£,(H) {(H)

Differentiating Equation (2.1-1.45), which is the way to linearization,
yields

df [ d(dH)
+ L

df| ai dt + dfz = dm[ . (21’146)
df, = %dH . (21-1.47)
df, = —‘;%—dﬁ . (21-1.48)
dH

g5 _o . 1-1.49
ar (2.1-1.49)

Referring to the last three equations and replacing d with the finite A
(2.-1.46) turns into
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A SLH | wehoV2d | (21-1.50)
dt 2/H
[ E————
ofy _ Mg
3H 2H
Arranging this expression gives
JPRUHDR - daH 20 (2.1-151)
Mg dt me

Time constant T is the term beside the derivative of AH', and if we
insert the values for A(H) and my(H), we get

2 2
T=- dszr T [A(D>+D2) + DeHm] (21-1.52)

The last expression is clumsy, but it also clearly confirms that the time
constant does truly depend on the operating state. The functional
dependence of T on H is

T(R) = yH (Ko + K;H + K,H?) . (2.1-1.53)

For the data from the preceding example K, = T72.83, K, = 242785,
K, = 2023, and the change T(H) obtained from (2.1-1.63), is shown in Figure
21-1T.

500 1
4001
300
200

1001
H

}

01 02 03 04 0S5 06 07 08 09 10m

Fig. 2.1-1.T Dependence of time constant T on operating state for
the tank shaped like a truncated cone

In Example 5 (where no linearization was performed) we showed that
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all the liquid would run out of the tank in 194 seconds. However, if we
linearize the equation describing the same outflow we get (21-1.51), into
whose right-hand side we must put am; = O. lf T is, thus, determined from
the initial operating state H = Im (aH(0) = 1), liquid flows out as in a
proportional system of the first order, according to the exponential

I

— 1
AH) = o 8 (21-1.54)

As H decreases, time constant T also decieases greatly, and the error
we would get from working with a constant T is more than obvious. A
compromise would be to take the time constant for H = 0.5m, but even
then the linear solution would not be satisfactory. Figure 21-1.8 shows this
well. It shows the r1esponse of the original nonlinearized and of the
linearized model with five different time constanis calculated for H = 1,
0.75. 0.5, 0.25, 0 m.

Figure 21-18 shows the complete dispicportion between the linear
model response and the real response, regardless of which time constant
is selected. This, however, is not unexpected. The linear model cannot be
expected to cover the whole field in which the variable under
consideration changes, from 0 to 100% of its initial value, especially when
the process has such a pronounced nonlinearity. What is essential is that
the linear and the nonlinear responses corespond quite well for the case
in which linearization was performed, at the initial state H = | m, {.e. when
T = 518 s, and for the first 0% change from the initial H. In the measure of
Figure 21)-1.8, there is almost no difference in this first 10X change from the
initial steady value.

The purpose of linear models is to give a sufficientlly good
represeniation of dynamic properties in the neighborhood of the operating
state under observation. Most devices and planils are made to work under
certain conditions. That is how they are dimensioned and their efficiency
and the quality of the final products are ensured in those nominal
operaling regimes, which we endeavor to ensure with the help of other
devices (automation, computers, regulators) or supervising personnel. Only
in rare cases (starting the plant up, breakdown. shuiting the plant down
and the like) are changes in operating states great. In such cases, if we
need models that include the dynamics of those processes, we primarily
develop nonlinear models or we use linear models but change and
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1ecalculate their dynamic characteristics (parameters) afler every more
substantial change of operaling point, to make them cornrespond with the
operaling point that has just been reached.

t

Fig. 2.1-1.8 Dynamics of change in liquid level H in the case of free
outflow
----- nonlinear model response
—— linear modsel response with § different time constants

06
0,4

027

100 200 300 400 500 6605 t

Fig. 2.1-1.9 Dynainics of change in liquid level H in the case of free
outflow
----- nonlinear model response
—— linear model 1esponse with a different T {or 5
operaling siales

The example of outflow shown in Figure 21-18 is a process with very
great changes in operatling state. Figure 21-1.9 shows the nonlinear model
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response and also how changes in level H would look if simulation was
perfoimed on a linear model, but if the time constant T was changed and
recalculated for five different operating states (H = 1, 0.8, 0.6, 0.4, 0.2 m).

This linear-model response is an obvious improvement on the
responses shown in Figure 21-1.8. It is clear that the "linear" response
would be quite close to the "“nonlinear” one if time constant T was
changed after every 10% change in liquid level H. (In cases when the
gain constant K appeats in the linear model too, whenever the operaling
tegime is changed K must alsc be changed if it depends on the operating
siate.)

The analysis we have just camied out on the simple process outflow is
important for many completely differen! devices in which different forms of
nonlinear relations between variables appear. Of course, the resulls we
obtained here are not completely general in the sense that they can be
applied to all cases. They are of more value as indicators of some basic
relations between dynamic properties and the operating state, and also
point to the different responses of the original nonlinear models and those
obtained through linearization.

2.1-2 GAS AND STEAM STORAGE TANKS

Gas and steam storage tanks are standard paris of processing and
energy plants. In many ways they are similar to liquid storage tanks, and
gas pressure P can be considered analogous to liquid level H. The basic
difference between gas and liquid storage tanks is that gases and steam
are compressible so that the assumption p = const. is no longer valid.
When the equations are formulated it is also very important to consider
the conditions under which the tank is charged and discharged. and the
type of gas (steam) flow. In other words. we should distinguish between
subcritical and supercritical inflow and outflow, isothermal and adiabatic
(or polytiopic) changes in the state of gas {steam). laminar and turbulent
flow.

In technical work condilions we usually have turbulent flow and
that assumption holds throughout this whole chapter.
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From the aspect of how the state of the gas (steam) in the tank
changes, the following words would, in principle, be sufficient. If the tank
walls are metal and uninsulated and the change slow. the gas (steam)
temperature in changeable operating regimes can be considered constant.
Such processes can thus be considered isothermal. In tanks that are well
insulated and where heat cannot be conducted from the tank in cases of
expansion, processes within the tank are adiabatic (for air the coefficient
is n = 1.41). In practice., measuremenis have shown that the usual pressure
and temperature changes iIn fact result as polyltropic processes,
somewhere between isothermal and adiabatic. For most slorage tanks the
coefficient n is between | and 1.2. In this chapter, unless stated differently,
we will proceed as if gaseous (steam) changes occur isothermally.

Finally, when we formulate the equations we will take intc account
whether the tank was charged and discharged under supercritical or
subcritical flow conditions.

We must also stress that we will work with the equation of state for
ideal gas. In most cases gases and steam satisly this equation for low
pressure and for vapors that are not too close 1o the line of saturalion.
The approach and methods dc not change for 1eal gases and steam. In
such cases it is only necessary to replace the equation of state for ideal
gas with the equations of state for those gases and steam, and verify the
results accordingly.

Finally, in this chapter also (isothermal changes of state), as
preceding one, models of dynamic processes will be obtained by
establishing only one equation for the conservation of mass.

Example 1 Contiolled charge and free discharge of tanks

Derive a mathematical model for the dynamic processes occurring
when the state of gas (steam) in the tank in Figure 21-21 changes.
Determine the equations and transfer functions for subcritical and
supercritical discharge. Gas (steam) is fed into the tank from a compressor
and the amount mi(t) does not depend on the pressure P. The state
changes in the tank are slow encugh 1o be considered isothermal.

in



46 CHAP.2 LUMPED PROCESSES

Fig. 2.1-2.1 Gas (steam) tank with conirolled chatge m(t)

The equation for the conservalion of mass in the case of the gas in the
tank is

dM__ dVe) _  de

Tt " T ai (2121

mj - My =

If the purpose had been 1o delsrmine changes in densily p, then
(21-21) would be the final form of the model. In practice, however,
pressure P and temperature ¢ are usually regulated variables and (21-2.1)
must be transformed to show P and 8. For this we will use the equation of
state for gas

p = p(P.8) ., {21-2.2)
fiom which

de _ 9% dP op d9 i

= TR - A T (21-2.3)

With (2.1-2.3). Equation (21-2) gives

o3p dP dp d9
o at Y T

mi - mg = V (2.1-2.4)

Equation (2.1-2.4) contains both pressute and tempetature changes and
is thus generally not sufficient for a dynamic analysis. To complete the
dynamic description the equation for the conservation of energy
would also have to be formulated. However, as we have alteady said, gas
{steam) storage processes in tanks that ars not very well insulated are
slow, and wusually occur in isothermal conditions, 8 = const. and
dssdt = 0. This leads to

dP

—d-l— = my - My . (21'25)

dp
v oP
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For ideal gases we have (R . . .gas constant)

o = _% , (21-2.6)
(22) = = . @121
The final result is

_%__cciitf_ =m - mg . (2.1-2.8)

Flow rate mi(t) is determined by the work of the compressor and its
dependence on P is neglected. It is thus necessary to determine mg(t),
which obviously depends on whether the tank is being discharged in
subcritical or supeicritical conditions.

a) Subcritical outflow

In practice, for subcritical flow (which is defined somewhat more
"roughly” by the condition P, > P/2) thiough valves. orifices and similar
parts of the pipeline, we use the formula

Mo = Koho/PoPPg) . Po> ;’— (21-2.9)

The exact analytical formula for calculating m, is given in Equation
(21-2.47), and in (21-2.9) K, contains both the valve characteristic K, and
the gas characteristic in the steady state under consideration (R, 8, x) .
K, is a valve characteristic known for every valve, and A, is the
cross-sectional area through which the gas (steam) flows. In orifices or
ordinary nonregulable valves A, is constant, but in conirol valves A, =
A (t). i.e. Ay is an arbitrary time function. If gas (steam) flows out the tank
through an orifice, outflow characteristic p is given instead of K,. This
characteristic includes the shape of the oiifice edges, the way in which
the fluid is brought to the orifice and so on. (The same is true of short
parts of the pipeline.)

Substitution of (2.1-2.9) into (2.1-2.8) yields a nonlinear, nonhomogeneous
ODE with variable coefficients

v P
= ;‘t + Kohoy/PolPPa) = my (21-2.10)
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The downstream pressure Py(t) is also variable and can in practice
change arbitrarily with time.

For the needs of further analysis, it will be the most useful 1o find the
linear form of equation (2.1-2.10). Differentiation of (2.1-2.8) gives

V ddP) _ .
s ar - dm dm, (21-2.11)

Variable dm, is of key importance because m, holds all the
nonlinearities. If (2.1-2.9) is written in the form of functional dependence

me = my (P, Pg, Ag) (21-2.12)
then dm, is

Mo
aP

dmg = dP «

oMo, oM, i
3P, dp, + oA dA, (2.1-2.13)

In the steady state in which linearization is performed we have

M
KOVI 0(I -I O)

Equation (21-2.9), together with (2.1-2.14), gives the partial derivatives of
(2.1-213)

(21-214)

Ko'

amo _ Eo _ _L _ . .
3P = 78—5- * R , sP="D Po . (21 2.158)
oMo _ MolP-2P) _ 1 P2Py 1 (21.216)
3P, 2B 5P R B, ~ R ° e
My Mg )
ry vl ol Ka . {2.1-2.17)

In the upper equations we have 1einttoduced symbols for f{low
1esistance corresponding with the definition of resistance already given in
the preceding section - see Equation (21-1.20). According to that definition,
resistance R equals the ratio of change in effort to change in flow, and in
this case of gas (steam) flow it is

By 2sP
= g = —H;_ . (21-2.18)

Figure 21-22 shows the dependence of m, on pressute P in the tank,
keeping P, = const. The tangent slope equals the inverse value of
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resistance R. It is important to note that the slope of the tangent is always
positive, i.e. an increase in P results in an increase in m,.

A brief examination of Fig. 21-22 and a comparison of Equatlions
(2.1-2.13) and (2.1-2.15) show that the first member on the right-hand side of
Equation (21-2.13) (partial derivative am,/oP} represents this slope of a plot
of my, vetsus P with P, and A, at their steady state values P, and A;. The
flow rate m, drops to zero when the tank pressute P is the same as the
outlet pressure P,.

Similarly, the second partial derivative in Equation (2.1-213) is the slope
of a plot of my, versus P, with P and A, at their steady state values P and
A,. This curve is represented in Figure 2.-2.3.

™
mg z
3%

(%)

— —
m, —
P— supercritical
—
Py — '—_
R P P, P [Pal

Fig. 2.1-2.2 Variation in flow rate m, with tank pressure P, B, = const.

Analogously to the resistance of flow to variation in the pressure P,
Equation (2.1-2.16) defines resistance R, in the case of variation in outlet
piessure P,
aF, B

_ 0
g - X P2P,

Ro = = qR, 0 ¢ O . (21-219)

It is useful to remember that in subcritical flow (P - 2B,) < 0, therefore.
the coefficient « ¢« 0, and consequently resistance R, is negative. The
physical meaning of this is clear - for constant P, an increase of
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Ps (APs > Q) leads to a decrease of mg (Am, ¢ Q) and vice versa.

This relation can be seen in Figure 21-2.3.

SOl frmme e e

P RlPa)

Fig. 2.1-2.3 Variation in flow rate m, with outlet pressure P, . P = const.

Equation (2.1-2.]9) shows an interesting relation between resistance R,
and pressure P, for a given pressure P in the tank. As P, decreases, R,
converges to - «, and this is shown in Figure 21-2.4. When Ro becomses
infinite changes in P, no longer influence changes in flow, ie. Amg = O.
This phenomenon is well known and occurs when supercritical flow

begins.

Rof
05P 0.75P P

~R

Sl

-2R
-3R
R |
-5R
6Rr 1

~7R 1

Fig. 2.1-2.4 Dependence of 1esistance R, on outlet pressure P,.
P = const.
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If the pressure differtence 8p = P - By is small (up to 10X P}, we can
take

25P

Mo

Substituting (2.1-2.15) - (2.1-217) into (2.-213) and replacing d with the
finite A, gives
Amg = —]—AP - —I—AP + KanA (21-220)
o] R IRol o [o] . -
We introduced the notation Ryl and the minus sign to stiess the fact
that an increase in P, (AP, » 0) results in a decrease of flow rate mg
(Amg ¢ Q).

Rearranging (2.1-2.11) and referring to (2.1-2.20), we get the linear form of
the initial equation (2.1-2.10)

dab + 1—Al:’ = A +

Cdt R

I;—OIAPO - KadAg . (2.1-2.21)

C again denctes capacitance, and the justification of this symbol will
be shown a little later. For the present, we have the equality

V. v Vo M
C= W-W_ T—T (21-222)

Multiplying (2.1-2.21) by R we get the well-known form of an equation of
a proportional system of the first order

daP

Tdt

+ AP = RAmy + P, - RKatAo - (21-2.23)

R
-—A
Rl
If we compare this equation to Equation (21-2.21) for a liquid storage
tank, we can see how similar the dynamic properties of those two different
tanks are.

Time constant T will also show itself to be similar 1o the one in the
preceding section. Here T is the product CR, which thiough the
substitution of the relevant equalities becomes

VP P M 3P
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T" again represents the ratio of the mass of gas (stteam) stored in the
tank to the mass flow rate through the tank in the observed operating
state

- M stored mass
T = m, = mass f{low rate ° (21-2.258)

The coefficient 2sP/P is dimensionless.

Notation in the form of state-space equations for the case when the
variables of interest are pressute deviations in the tank AP and deviations
of flow rate through the valve am, takes the form

. l 1 R 1 K Am; |
[aP] = [ 1arP] + [+ T CAJ[Q‘A%] , (21-2.26)

X'"=AEX+BTU

AP 1 0 0 o0 Amy
-1, [aP] « | AP, | . (21-227)
Amg —R— 0 —E—l‘ KA AAo

Y=CX+DGU

The process under observation, with two output (AP, amg) and three
input (Am;, AP, AA,) variables, has 6 transfer functions. From their forms
we can conclude about the dynamic properties of the process, i.e. about
the way in which the output variables will vary with the input variables.
The matrix transfer function 6(s} is obtained in the usual, manner for
matrix siate-space equations, which we will show here in shortened form

G(s)=C(sl1- A'B + D (2.1-2.28)
l 1 1 R 1 K ° ° 0
= —_— = = 2 _DA
G(s) 1 - i c RJT c + . 1 )
R T IRol A
(21-2.29)

If we perform the indicated matrix operations we get G(s) and we can
write
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R
R iRol  _RKa .
AP(s) Ts+l Ts+l Ts+l AM(s)
= AP(s) (21-2.30)
AM(s) 1 R Cs TKas 8A(s)

Ts+l 1Ryl TsH Ts+l

\ 23P
(T‘CR.C—ﬁs_,R——H;,RO-aR)

Individual transfer functions are elements of the matrix transfer -function
O(s). They are all, except G,y(s) and Gy4(s), transfer functions of
proportional systems of the first order, which could have been expected
since there is only one mass storage tank. It is especially important to
note that in the transfer function Giy(s). which relates aP(s) to AP4(s). the
gain coefficient is smaller than unity, since R ¢ [Rol. (For example, if we
use Figure 21-24 we can show that if P = 10 bar and P, = & bar, and if
B, increases to 7 bar (i.e. AP =1 bar), the pressure in the tank will
increase only by R/R; = R/3 R = 0.333 bar.)

Figure 21-2.4 also leads to the conclusion that changes in pressure
deviation in the tank and in outlet flow rate will be all the smaller as B,
decreases and approaches critical pressure Py. Since it is obvious that,
when P, converges to Pk. IRol converges to infinity, the influence of
variations in P, will completely disappear for Py < P¢. In the following
lines, when we analyze supeircritical outflow, this will be confirmed.

The transfer functions G,,(s) and G,3(s) show that when AP, and aA,
vary, outflow will respond as a derivative system with a time-lag of lIst
order. This character of transfer behavior is typical for all tanks in the
case of so-called downstieam changes. It is not difficult to see that in the
case of disturtbance in AA,. the flow rate change aAmg from the preceding
example of a liquid tank will also respond like derivative systems. Similar
o the case of pressure change AP, the transfer function G;x(s) shows that
the influence of AP, on the flow rate Am, decreases the closer P, is to
the critical pressure Py. In the case of B, s Py this influence disappears
completely.

b) Supercritical outflow

Often outlet pressure P, is smaller than the critical pressure, and then
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gas flow through orifices is supeisonic (supercritical). The basic
characteristic “of supercritical outflow is that the amount of gas (steam)
flowing out of the tank depends on pressure P in the tank, but not on
pressure P,. It is calculated from

mo = KyAgd (21-2.31)

~_p
YRS

K, is the valve characteristic, and for orifices it is the outfllow
coefficient 4, ¢ is the gas (steam) charactleristic and its value is 0.726,
0.685 and 0.669 for monoatomic, diatomic and more complex gases,
respec ively. If changes of state in the tank are isothermal, equation
(2.1-2.31) becomes

Mo = KoAoP (21-2.32)

Then Equation (2.1-2.8) becomes

vV dP
W gi— + KvoP = I . (2]'233)
The last equation, for A, = const, is a linear DE with constant

coefficients. For variable A, the product A, P makes (21-2.33) a nonlinear
equation which we can linearize o obtain

V daP W, .o, Mg .
RS —dl + T AP = Am; —K-O—AAO . (2] 234)

The coefficients beside AP and AA, are alieady known and represent
the inverse resistance R and the coefficient of transfer Ka

P YRS

R= - =« —nr 21-2.35
my KvAod ( )
mo

Ka = — - (21-2.36)

Rearranging (2.1-2.34) for gas (steam) storage processes in tanks in the
case of supercritical outflow we get

daP

Tdt

+ AP = RAm; - RKaaA, . (2.1-2.37)

Equation (2.1-2.37) is identical to Equation (2.1-121) for variable liquid
level in a tank if we replace AH by AP. It differs from (2.1-2.23) for variable
AP in the case of subsonic gas (steam) outilow because (2.1-2.3T7) does not
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contain the term showing the influence of outlet pressure deviation AP, on
processes within the tank. It could also be said that the case of
supersonic outflow is a limiting case of the preceding one, when P,
converges to Py. Thus all the equations we derived for subcritical flow are
completely valid here, with two important differences:

- resistance R = P/m,

- the middle term on the right-hand side of Equation (2.1-2.23)
disappears, resulling in the disappearance of the middle column in
matrices B, D and @(s) and the disappearance of the middle row of
the input vectors U and U(s) irn the matrix state-space equations
(2.1-2.26) and (2.1-2.27), and in the matrix transfer functions (2.1-2.30).

Further analysis of the process is reduced to earlier comments which
we need not repeat. We should, however, turn once more to the resistance
R, to gas (steam) outflow in the case of P, < Py, which Figure 21-2.3
shows to be infinite. This means that for a finite change in AP, the
increase Am, equals zero, i.e. that the resistance R, to change in flow is
infinite. From the definition of resistance as the ratio of effort increase to
flow increase this is even more obvious

Ro| = =2 = =% = o . (21-2.38)

POSSIBILITIES OF MASS STORAGE. CAPACITANCE C.

Up to now we have paid a lot of attention to the r1esistance certain
elements of the system offer to changes in mass flow in the case of
changes in effort (potential). Less has been said about possibilities of
mass storage, characterized by capacitance C.

Capacitance C is defined as the ratio of increase in stored mass 1o
increase in effort

dM

C=ar

(2.1-2.39)

In the liquid storage tank effort is the height of liquid H, and the total
mass stored in the tank is M = AHp. From (2.1-2.39) we get
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C =

d(AHq) - Ap - M [k_g]
8 Ry .

T H (2.1-2.40)

In the gas (steam) storage tank the equivalent of height H is pressure
P in the tank, but in this case the possibility of gas (steam) accumulation
also depends on the conditions under which that fluid is stored. From that
aspect we distinguish between isothermal C and polyttopic C,
capacitance C. As has already been said. in this text we will usually
analyze isothermal processes and use the ideal gas equation. Therefore

C= = = =

ap ap R P (21-2.41)

dM d(Ve) v M [ kg
"t Pa

In the case of polytropic temperature change ¢ is no longer
independent of pressure P so we have

Pv = const. . (21-2.42)
that is

dv 1 v

S NP (2.1-2.43)

Consequently, the polytiopic capacitance Cp is obtained as follows

dM do _ V dv

Cotgp V@t vrap

LV E Ll (21-2.44)
v n

1vi
n P

Thus capacitance C is the greatest in the case of isothermal changes
of state in gas (steam).

Example 2. Qutflow of gas. Calculation of time constant T

Consider a tank of volume V = 50 m? filled with gas at the temperature
of 8 = 203 f’C with a gas constant R = 150 ]J/kgK and under the pressure P
= 10 bart (x = 14, ¢ = 0.685). At the tank exit is a valve of area A, = 0.002
m? with valve characteristic K, = 0.75. Detlermine time constant T that
characterizes the dynamics of pressure change in the tank if the outflow

is into:

a) the atmosphere,
b) into a tank with constant pressure P, = 6 bar.
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a) The critical pressure for a pressure of P = 10 bar in the tank is Py =
5.28 bar. Since P, = | bar, outflow is supercritical. From (2.1-2.3]) it follows
that

= Khoh — =

1

dP yRs R

Assuming an isothermal change in gas state in the tank, we have
(2.1-2.41), which together with (21-2.45) determines T

(2.1-2.45)

T=CR=—" YR _omls (21-2.46)
R KyAoo

b) In the case of P, = 6 bar flow is subcritical so time constant T can
be determined from (2.1-2.24).

T =CR = —V Z_SP
R$ MM,

In the upper equation the only unknown variable is flow rate m, which
is determined from (2.1-2.9) for subcritical flow. But in this case we will use
the more complex and correct mathematical expression

2 X+
(—%"—) X : (2.1-2.47)

Mo = KeAoP |/ 22— 1 (%_)7-

Equation (21-2.9). which we used unitil now, is satisfactory for most
practical calculations, and constant K, can, after the flow rate m, has
been calculated from (2.1-2.47), be obtained ‘easily from (21-214). The
upper equation gives m, = 4.84 kg/s. from which it is not difficult to get

T = 188.04 s.

Commenting on Equation (2.1-2.33) we said that if the valve area A, is
constant, the discharge of the tank under supercritical conditions is linear
if gas-state changes in the tank are isothermal. (In that case temperature $
beside the dP/dt term is constant.) The following example will show that it
is then 1elatively easy to describe the dynamics of pressure change in the
tank.
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Example 3. Outilow of air under supercritical conditions

Air flows into the atmosphere out of a tank of volume V = 400 dm?,
with a pressure P = 40 bar and lemperaturte $ = 15 °C, through an orifice
Ao = 20 mm? and 4 = 1. P, = | bar. Determine how long it will take to reach
subcritical outflow. We assume that the process in the tank is slow enough
to be considered isothermal. For air, ¢ = 0.685 and R = 287 J/kgK.

For P, = 1 bar, Py = P,/0.528 = 1.894 bar. Equation (2.1-2.33) with m; = O
gives

dpP
Rl = . 1-2.48
Tdt +P=0 (21-2.48)

Equation (2.1-2.46) determines time constant T.

\ 1
YRS  uhod

The solution of (2.1-2.48} is simple

-—l-—t -0.009851
P=40eT =40ce

T = = 101.54 s

The time after which P will equal 1.894 is obtained from

1 40
tkrit = 0.00985 In T804 = 310 s . (21-2.49)

The assumpticn of temperalure constancy in the tank can be made for
“slow" processes of state change. Many tanks are charged and
discharged so quickly that heat cannot be completely exchanged with the
surroundings in that short time and the process in the tank is polytropic,
The purpose of the following example is to show the error if we use an
isothermal model for a process that is in fact polytropic. (Of course, in
every particular case a similar procedure should be repeated because of
testing.)
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Example 4. Linearity of gas (steam) outflow from tank

Consider an air tank of volume V = 60 dm?® for starting up Diesel
aggregate. The air pressure is 60 bar and the temperature 293 °C. As the
aggregate is started up. the air flows through an orifice 8§ mm in diameter
into a cylinder where the pressure is | bar. The outflow coefficient is p =
0.6, and the air pressure in the tank decreases polytiopically with n = 1.25.
For air we have ¢ = 0.685, R = 287 ]/kgK. Delermine the lime necessary
for the pressure in the tank to decrease to 12 bar and show the pressure
change graphically for a:

a) polytropic process.
b) isothermal process.

a) For P, = | bar, Py, = 1894 bar and the flow conditions are
supercritical all the time. For m; = O, using (21-21) and (2.1-2.44). we can
write

dM dM dP dP
a " ap @ " Cvart ™ - (21-250)

Since outflow occurs under supercritical conditions, we take (2.1-2.31) for
m, and get

- .._._v_. dP = uA°¢

RS dt (21-2.81)

P
YRS

n-|

Using the known relation 3§ = 3.(%) N after arranging (2.1-2.51)
1

we see that
n-1
v p, 20

nuAodyYRS, dnl

dt = - dp (21-2.52)

Integration of the upper equation from P, to P, where P, is the initial
pressure (in correspondence with the notation we used up to now, we
could write P instead of P,) and P the pressure at t, we get the final result
for time t
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n-1

A 2 Py, 2n

t = — ot 1 -1 (21-2.83)
BAO(W R34 n-l [( P ) :]

Thus. the time needed for the pressure in the tank to fall from 60 to 12
bar, if the change is polytiopic, is from (21-2.53)

Fig. 2.1-2.5 Pressure deciease in the tank
----- polytiopic (1eal) change. NL.
isothermal change. L.

b) As in the preceding example, we have

dP

T P=20
T
where
_ V YRy
T = CR RS, uhod 2564 s

For the initial condition P, = P, = 60 bar, the sclution of the upper DE
is
1

1 -0.0391
e

P=60el =60 (21-2.54)

The last equation for P = 12 bar yields.
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! lné-g- = 4127 s

b= %503 P13z

The error in the time necessary for pressute in the tank to fall from 60
to 12 bai, if the change is considered isothermal, is +14.64%. Figure 21-2.5
shows the curves of the real polytropic (nonlinear - broken line) and of
the isothermal (linear - full line) pressure fall obtained from (2.1-2.53) and
(2.1-2.54).

These curves show that the error due to the assumption of isothermal
state change in the tank is not very great. However, the results given in
this example are not generally valid. Their main purpose is to serve as an
illustration for the possible consequences of some assumptions.

To end the preceding examples, we must repeat that when the tank is
discharged under supeicritical conditions, the process is linear only if an
isothermal state change takes place within the tank. In that case the time
constant T is unchanged in every moment, since the lemperature $§ is
constant - see Equation (21-2.46).

Example 8. Charge and discharge of tank due to pressure difference

Consider the gas (steam) tank shown on Figure 21-2.6, which is
charged and discharged through an inlet and outlet (control) valve due 1o
pressure difference. We must formulate the equations describing unsteady
changes of gas (steam) pressure in the tank depending on pressures Py
and Py, and on the area of the contriol valve A,. The changes in the tank
are isothermal. A; = const.

Unlike Example I, the amount of gas at the tank inlet is no longer
independent of the pressure P. Analogously to Equation (21-2.9), ie. its
linear form (2.1-2.20), in the case of subcritical inflow we see that

m = KAYPPP), P %‘— ) (2.1-2.55)
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Am; = —I—AP( - 1_ AP (21-2.88)
Ry IR"|
R = —a—F—'- = Q_EL ,8F;=PF - B , (21-2.8T)
amy my
. OF
R = E = Riﬁ = aiRi . o < 0. (2]-258)

Fig. 2.1-2.6 Gas (steam) tank with uncontrolled inflow m;(t)

For small pressure diffetences between Pj and P, o is close to unity
and we have |[R*| = |R.. The same diagram from Figure 21-2.4 can be
used for «;. only now R® is on the ordinate and pressure P, expressed in
parts of the input pressure P, on the abscissa. All the other equations and
methods used in Example | are valid here also. and need not be
repeated. For a given my(t), Equation (2.1-2.2]) yields

dAP ] 1 1 1
C —— + —AP - — AP, = — AP;j- —AP - KaaA 2.1-2.59)
dt R lRol [¢] Ri { IR-I A L¢] (
If an equivalent 1esistance R is inttoduced in the following manner
1 1 ]
Re = ]—RTl , (21-2.60)

Equation (2.1-2.59) is translated into a form very similar to (2.-2.23)

daP . Re,p , Re (21-2.61

T4 * AP R, AP 4 ]Ro!APO - ReKa2A, 1-2.61)
C

T = CRe = T 1 . (21-2.62)

+ -
R IR7I
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We will not rewrite the state-space equations from Example 1. The
Equations (2.1-2.26). (2.1-2.2T) and (2.1-2.30) given there are completely valid
here also, with the following changes

R = Re
v
T = CRe = oy
R R
_ AP . _ APy(s)
Am; = R AM(s) = R

We will not specially analyze cases when charging and discharging
occur under supercritical conditions either. The upper equations are
general enough and can also be used in supercritical cases, when it is
sufficient to make the resistance infinite. For example, if the tank is
charged under supercritical conditions, ie. for P ¢ P)/2, the coefficient
R" =. =, Re = R. and R; also changes, R; = Pi/m;, so that (2.1-2.6]) becomes

daP R R
T5— *+ OP = —ﬁAPI +l—§:|APo - RKanh, (21-2.63)

Equation {21-2.61) shows that now time constant T is not determined
only by coefficient R, and according to (21-218) by the pressures P and
Po. but also by R® and consequently, also by pressute P;. This
dependence on P; ceases to exist only when the tank is charged under
supercritical conditions. Also, if AP; or AP, change., AP will not change for
the same value but its change is determined by the gain coefficients
Kpi = Re/Rj and Kpo = Re/[Rol.

At the end of this example it will be of use to show the
interdependence of variables from Equation (21-2.61) in a block diagram.
We do this not only because a graphical representation is convincing, but
also because the diagram imposes comparison between the dynamics of
heat transfer thiough the wall of the heat exchanger and these processes
of mass storage. The structure of the blocks in Figures 2.1-2.7 and 2.3-2 is
completely identical. The only small difference is that in Figure 2.1-2.7 the
tesistances in the feedback link differ from the resistance beside the input
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variables. (If the differences between pressures P;, P and P, are not great,
those resistances become the same, ji.e. we will have R, = R and R® = R;,
so the diagrams become identical.)

Fig. 2.1-2.T Block diagram of pressure dynamics in a gas (steam) tank

In the previous discussion of tanks that could only store mass, the
mathematical model of dynamics was obtained fiom the equation for the
conservation of mass. In the following section we will show how the same
or similar dynamic phenomena and their nolation appear in the physically
completely different processes of fluid flow thiough pipes. Their modsls
will either be obtained only from the equation for the conservation
of momentum or fiom the simultaneous formulation of the equation
for the conservation of momentum and the equation for the
conservation of mass.

2.2 FLUID FLOW

Fluid supply and transpost and the connection of individual process
units runs through pipes (steam pipes. gas pipes. walerpipes. pipelines),
which together with pumps, compressors. valves and other fittings are the
unavoidable composite parts of plants. The process of fluid flow 1ates
through pipes is usually a contiolled piocess in the sense that pressures
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and flows are kept within predetermined boundaries through the action of
control devices on various execulive control elements or actuators
(usually regulation valves and pumps or compressors). It is thus also
important to know the dynamic properties of those flow processes. The
basic equations describing flow processes are identical for liquids, gases
and steam. Nevertheless, for practical needs, to simplify the often
complicated calculations that must be undertaken if we use the most
general laws and equations of fluid mechanics, it is useful to analyze
liquid flow separately from gas and steam flow. In the first case we can
usually neglect the compressibility of liquids .(p = const) but not
momentum, i.e. the inertia of liquid in the pipe. In the case of gases and
steam the procedure will be the opposite. It will usually be possible to
neglect their momentum, but not also the effects of compressibility, i.e. we
will have to count on changes in density ¢ in unsteady conditions.

On the following pages. when we devise models for the dynamics of
flow processes, we will start from simpler and more specific cases of
liquid and gas (steam) flow making use of the upper hypotheses.
Gradually we will reach the most general dynamic model for the flow of
an arbitrary fluid that has both the property of capacitance (p # const.,
C = Q) and the property of inertia (I = 0).

2.2-1 LIQUID FLOW

The basic assumption in this part of the book is that liquid is
incompressible {p = const), which in fact means neglecting liquid storage
in pipes. i.e. we consider that capacitance C = 0. In this way, at the very
beginning. we dismiss the possibility of observing the well-known water
hammer effects in pipes. In Section 2.2-3 we will leave out this assumption
and get a model for the flow of an arbitrary fluid, for which the models in
this chapter (C = 0) are only a special case. Unlike in the preceding
section, here we neglected compressibility so we will now obtain a model
by formulating an equation for the conservation of momentum.
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Example 1 Dynamics of liquid flow through pipes

Figure 2.2-11 shows a horizontal pipe of length L, with solid walls and
of constant cross-sectional area A, which connects two tanks. A centrifugal
pump pumps liquid through the pipe and a contiol valve in the pipe
regulates flow. Derive a model for unsteady flow changes through the
pipe. The liquid is considered incompressible (¢ = const., m = m(z)).

Fig. 2.2-1.1 Liquid transport between two tanks

The law for the conservation of momentum (I, = M w) for liquid in a
pipe has the well-known form

n
S F = Sm (2.2-11)
=1 dt

F; denotes all the forces that act on the total mass (M = ALp ) of liquid
in the pipe. In the general unsteady case pressures P, and P, pressure
changes in the valve (drop sP,) in the pipe (drop, decrease 3P.) and in
the pump (increase 8Pp) are time functions. If we specify the forces that
act on the mass of liquid M in Equation {2.2-11), we get

d(Mw)

diMw) dw
dt

= Ale g

(Py + 8Py - 8Py - 8P)A - PoA = (2.2-1.2)
The liquid flow rate (mass flow m) is

m = Awp , (2.2-1.3)
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and if we insert velocity w from the upper equation into Equation
(2.2-1.2), we get

Py + 8Py - 5Py - 8P¢ - P, = % %—? (2.2-1.4)
This equation describes the change of mass flow through the pipe
depending on pressutes P, and P, and pressure changes 8P, 8P, and &Pc.
The grealest mathemalical difficulties in obtaining models hide in the
determination of those pressure decreases and increases. The same result
can be found in Section 3.3, when the fluid flow is observed as a process

with distributed parameters (see Equation (3.3-29) ).

It is a known fact. and in the case of valves it was shown in the
preceding section, that there is a direct relationship between flow rate m
and pressure change &P in individual parts of the fittings. For pumps and
valves these changes depend on many other factors as well. In the case
of pumps the speed of rotation n is of basic importance, and for valves
their cross-sectional area A,. In shori, if we want to get a final expression
for dynamic flow changes, we must know the following analytical 1elations
between flow and pressure change

§Pp = 8Pp(m, n) (2.2-1.5)
8Py = Py(m. A,} . (2.2-1.6)
$P. = sP(m) . (2.2-1.71)

As a rule the upper analytical expressions are not available, but there
is (always supplied with the equipment) a graphical presentation of pump
and valve characteristics. Figutes 2.2-12 and 2.2-13 show those
characteristics, and they also show how to determine graphically the
values of the partial derivatives of pressute 3P, and &P, by the
independsnt variables,

For turbulent flow through pipes we have the characteristic resistance
law, according to which

2
sP = )‘L—‘ZL" s ™ L Km (2.2-1.8)
[Y

d
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Fig. 2.2-1.3 Static characteristics for a regulation valve

The curves shown and Equation (2.2-1.8) make i1 obvious that Equation
(2.2-14) is nonlinear, and if we want to analyze unsteady flow it should be
linearized. This narrows down the field of process variable changes for
which the model gives a faithful dynamics description, but linearized
models make it simpler to understand the character of transient processes,
to carry out analyses and to compare the dynamics of flow processes with
other, completely different, processes.
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Differentiating Equations (2.2-1.4) - (2.2-1.7) we get

dP, + dsP, - dsP, - dsP, - dP, = 7’;— d(;m) . (22-19)
aspp = 2P0 g o 2Py g (22-110)
am on
Rp bp
_ 8P, a8b,
dsPy =—= dm + — A, dAy . (2.2-1.11)
Ry by
_ B,
dsPe = ~—— dm . (2.2-1.12)
| ——
Re

In the last three equations, in correspondenée with the already given
definition for resistance to flow R, we introduced symbols for pump
resistance Ry, valve 1esistance R, and pipe resistance R.. If analytical
expressions in the form of Equations (2.2-1.8) - (2.2-1.T) exist, it is in most
cases not difficult to calculate coefficients R and b. If theie are no such
expressions, however, coefficients R and b in the steady stale are
determined graphically, as the preceding figures show.

On the basis of previous analysis, we can write without repeating the
derivation

Ry = Z%pi . (2.2-113)

b, = - 2Py (2.2-114)

v

>

Rc = zTi[?_c = ZKca . (2.2'1.15)

It is important to point out that as flow through the pump increases. the
pump head decreases. Thus r1esistance R, is negative. Finally, we can
write

a3Pp = -[Rpjam + bpan (2.2-116)

APy = Ryam - |by|ahy . (2.2-117)
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AsPc = Rcam . (2.2-1.18)

If we substitute the last three equations into (2.2-1.9), we get

I; S‘C%‘E + (R, + Re + [RpPAm = AP, + bpan + |by|ah, - &P, (22:119)
dam L 1 bp Ibyl -
T— ETE Am = R AP, - R AP, + R AR R AA, (2.2-1.20)

The upper equation shows that unsteady changes of mass flow of an
incompressible liquid through a pipe have the properties of the first-order
(proportional) system. This is a general equation with four input variables
on the right-hand side. In practice, if the valve cannot be regulated the
term with AA, on the right-hand side disappears. Similarly, if the pump
rotates with a constant number of revolutions the term with An is lost, and
SO on.

It is especially important to analyze the time constant T. We must know
how it came into being and what its value is. Before thal, however, we
must get acquainted with the concept of inertance | of the mass of liquid.

Let liquid flow ideally. without friction, thitough a smooth pipe of length
L and cross-sectional area A. Then M = ALp denotes the total mass of
liquid in the pipe, and m = Awp the mass flow rate of that liquid through
the pipe in kg/s. The law for the conservation of momenium is

L dm
8P = T a - (2.2-1.22)

The upper equation follows directly from (2.2-1.4) if we neglect pressure
drops and inttoduce the symbol (P = P, - P,) for the pressure difference
that causes flow change with gradient dm/dt. The coefficient beside dm/dt
is the measure of that change, and it is called inertance [. The larger I is,
the smaller the increase in mass flow for a given pressure difference sP.

Inertance I is thus defined as the ratio of effort (potential) 5P to the
gradient of change in fluid flow dm/dt.

o
-l
r

T (2.2-1.23)
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It is not difficult to see that the ratio I/R has the dimension of time, and
thus we introduced in to Equation (2.2-1.20) the symbol for constant T

'I'=I———L—= Lam _ LApAw  Maw

R~ AR~ ARAm  AAP  AAP (2.2-1.24)

If we expand the numerator and the denominator in the last equation
by am., we get the meaning of the time constant

_ Maw _ change in momenium )
T= AASP ~ change in force (2.2-1.25)

If dependence beiween pressure drop and mass flow was linear, and
not quadratic as in the case of valves and pipes, we would have the
following expression for resistance

R = £ (2.2-1.26)
m
Then we could show that
L I ) L M Alew }
R RV’RC‘lRpl A(Rv"Rc"lRpD m A(BFV+8PC+|5Pp|)
Mw momentum
B ASF - force (22'127)

This ends the analysis of liquid flow dynamics and we will not attempt
to give the state-space equations. That will be done at the end of Section
2.2 for the most general case of an arbitrary f{luid flow, for which this flow
in Example | is a special case with the assumption C = 0. It is, however,
useful to give a block diagram of variable interrelations obtained after the
Laplace transformation of Equation (2.2-119). This has been done on Figure
22-14.

1 am A(Mw)

Fig. 2.2-1.4 Block diagram of the dynamics of liquid flow
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The following two numerical examples will show the values of time
constants characterizing liquid flow processes. We will show that these are
fast processes with a small T, whose dynamics can usually and most
frequently be neglected in comparison with the dynamics of the much
slower final control elements {actuators).

Before analyzing numerical examples we must repeat that in the case
of dynamic processes the most sensitive part is, as a rule, to determine
the coefficients (parameters) of the dynamic model using statical (design)
calculations. Here this concerns determining the coefficients Rp. Ry, Re, bp
and by,. To calculate them correctly it is necessary to know very well the
methods of statical calculation, as the following lines will show.

Example 2 Calculation of dynamic coefficients. R, I, T

Cold water (p = 1000 kg/m? v = 0.001 kg/ms) runs at a rate of 0.4I7
kg/s (1.6 m3/h) thiough a pipe of inner diameter 26 mm and length

a) 100 m
b) 1000 m.

The pipe is smooth, with two elbows and control valve NO 25 in which
the pressure drop for the given flow is 0.5 bar. The flow is not forced by
pump but is maintained by pressure difference between the tanks.
Determine time constants T.

a) L =100 m, A = d?x/4 = 0.0005 m?

Te__L (2.2-1.28)
A(Ry*Rc+[Rp))
The above expression shows that it is still necessary io determine the
resistances. As there is no pump. R, = 0. From (2.2-1.13)
25B, bar
Ry = e 2.3981 ka7s
For the pipe and the built-in elbows there is the already known
formula for pressure diop calculation
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2 3
8P = (A—IC“T + B °2w = d > g (2.2-129)

K. is the coefficient used in Equation (2.2-18). The unknown in the
expression for sP. is the coefficient A, which depends only on the
Reynolds number for a smooth pipe and is calculated from the Blasius
formula

wdo 0.85-0.025-100

Re = ; = X = 21250 » 2320
A = 03164 0.0261
YRe

The individual resistances coefficient for the elbow is 0.2, and can be
written as follows

0.026] %4-02
- : = 207466 |

2-1000- 0.00052

Ke

3P = 2AT466 W = 31815 —
m

Referring to (2.2-115) we have

_ 2P, 2-37816 bar
Re = —x =~ ~oamr -84 kg/s

Now we can get from (2.2-1.28)

L 100-10 73

T = K& EY = 00005(2308+1814)

= 0474 s

b) L = 1000 m, A = 0.0005 m?

The values for Ry and Ry do not change, and R¢; and T are calculated
as follows

1000
0.0261 2222, 2.02
K¢ = 0.025 = 20.9-10°
2-0.00052- 1000

e = 303210 N g, - e _ypgpbar
m

m kg/s
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T = 1000 = 1.009 s

0.0005(2.3981+17.42)10°

Thetrefore, although the length of the pipe increased 10 times, the time
constant T is only twice bigger. The reason for this is that as length L
increases (increased inertia) so does also the resistance of the pipe R
which decreases the growth of the time constant T.

Example 3 Calculation of dynamic coefficients. R, I, T

Water flows at 3 m/s through a pipe 300 mm in diameter and 300 m
long. The relative roughness of the pipe is ¢/d = 0.002, and the kinematic
viscosity of water v = 91077 m?%s, o = 1000 kg/m®. Calculate the time
constant T.

As there is no pump and valve in the pipe

1 L

T=5"3r

To determine the pipe resistance R. we must {irst calculate the
pressure drop along the pipe. A = 00707 m2 m = Awp = 212 kg/s,
Re = wd/v = 10% the coefficient A for rough pipes can be determined
either from the Altshul or the Moody formula

1
e 10° 3
Moody: ) = 0.0085[1+(20000~3-+5=)" ] =0.0245

68,025

£
Altshul: » = 0.l (‘a— +-§-g) = 0.02346

For this field of Re and relative roughness the difference is only 4%,
and in the further calculations we will use the value ) = 0.02346.
L 1

Kc=x—

= 2.346
d 242

5P, = Kom? = 2.346-212% = 105438 Pa

2B, 2105438 Pa
Re = m 22 994.1 kg/s
T 300 = 4265 s

® 0.07T07-994.1
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2.2-2 GAS AND STEAM FLOW

As in the case with liquids., here we will also begin by making as
many assumptions as possible to obtain a simple dynamic model for the
flow rate and pressute in gas pipes. If we prune the physical process, in
this way, of phenomena that are al present secondary, insight into its
basic dynamic properties will be easier.

The analysis that follows is true of relatively short pipes through which
gas (steam) flows with the usual technical velocities of flow {much smaller
than critical), and along which pressure drop resulting from various
resistances never exceeds l0% of the pressure. In this case pressure drop
can always be calculated as in the case of liquid. These are the
introductory assumptions that will be valid for the complete following
analysis.

Unlike in the case of liquids. changes in gas density ¢ can now not
be neglected, but because of low gas (steam) density the inertia of
the gas (steam) mass in the pipe can be neglected. Therefore,
we leave inertia effects out of our analysis (1 = 0), and take into
consideration possibilities of mass storage in the pipe because of the
compressibility of the media (p = const., C = const). As in the case of
liquids, gas flow also has resistances along the pipe: valves, flanges and
the like. From the aspect of gas state changes in the pipe, we will assume
here the case of isothermal change. There is no special difficulty if we
want to consider polyttopic change. In that case we must simply insert in
all the equations, instead of the isothermal capacitance C, the polytropic
capacitance C,. As in the case of the tank, here also we will use the state
equations for ideal gas.

Example 1 Dynamics of gas or steam flow. Boundary conditions

A compressor (air pump) diives m kg/s of gas through a control valve
between two tanks. Derive the mathematical model describing the dynamic
changes in mass flow and pressure in the pipe.
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Fig. 2.2-2.1 Gas (steam) transport between two tanks

The pipe has two properties. Together with all the fittings and the
pump; it resists gas flow. This r1esistance is characlerized by total
tesistance R. It also enables storage of a mass of gas, i.e. it has the
property of capacitance C. Thus this pipe can be represented as a
connection in series of resistance and capacily, which has been done on
the following two figures.

B R j
m R my ¢ m;

Fig. 2.2-2.3 Pipe approximation in C-R series
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In the upper figures, R 1epresents all the possible resistances that
influence pressurte change on the observed length of pipe L, and C
tepresents the total capacitance of the whole system.

Although this does not seem important at first glance. we must
nevertheless emphasize the following. The order in the series is not
arbitrary but depends on the given boundary conditions at the ends of
the pipe. That this is so will be shown in the following lines when we
formulate equations for both the arrangements. As the possibilities of mass
storage are not neglected, we will gel the dsesired dynamic models by
formulating equations for the congservation of mass and
momentum, and in the latter we will neglect the momentum of the mass
of gas in the pipe.

For the R-C order on Figure 2.2-2.2 we have

dM Vv dp,

m - Mz = - < Ry ar (22-2)
Py + 8P, - 8Py - 8P; - P, = d(ng) =0 . (2.2-2.2)
P, - Py = 8Py + 8P - 3P, . (2.2-2.3)

After we neglect the influence of changes in the number of 1evolutions
of the compressor An and changes in the cross-sectional area of the
valve AA, (which does not make us lose anything essential but only
makes it easier to derive the equations), the linearization of the upper
equations gives

Am, - Am, = C daP, (2.2-2.4)
dt
AP, - AP, = (Ry + R¢ + |Rp|) am,y = Ram, (2.2-2.5)

The last equation. except for the assumptions made here (an = O,
AAy = 0,1 = L/A = 0), is identical to Equation (2.2-119).
For the C-R order we analogously get from Figure 2.2-2.3

daP,
dt

Amy - Am2 = C (22'2.b)
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AP] - AP; = RAm2 . (22'27)

The symbols C and R have the same meaning as in the preceding

chapters
v M 25P 2P
C=ge =F - R=Rv+Res [Re| = T« 28+ [Ry]

Equations (2.2-2.4) - (2.2-2.7) are pairs of interconnected equations with
four variables - am,, Am,; AP, and AP,. To solve those pairs of equations
it is necessary to know two variables, and then it is no problem to
delermine the other two. For fluid flow processes we can make an
arbitrary selection of independent boundary conditions (inputs), except
that mass flow rate and pressure (both boundary conditions) must
not be given at the same end, at the same time. (We will say
more about boundary conditions in Chapter 3, when we talk about partial
differential equations. For the present it is enough to say that if both the
boundary conditions are given at the same end, the other end remains
completely undetermined because there is no information about the way in
which that end of the pipe "contacts" the surnoundings). Figure 2.2-2.4
shows the four possible cases of boundary conditions that can appear in
practice. The most frequent and most interesting are examples a) and b),
and here we will analyze these cases in more detail.

AR AR &R ah
———id — o P ————
amy ‘ an Amy Am‘
a) b)

AR AR aR &R,
am, amy am, am,
et o —— e
c) d)

Fig. 2.2-2.4 Possible boundary conditions in fluid flow

The following derivations will show the truth of the statement that in a
dynamic representation the order of resistance and capacity elements is
determined by the given boundary conditions.
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a) AP, and Am, are given. Determine AP, and Am,.
- R-C oider, Figure 2.2-2.2 .

Equations (2.2-2.4) and (2.2-2.5) give

dAm| dAPl

T qr oM = Amp C Tami (2.2-2.8)
T dcti\th + AP, = - Ram, + AP, . (2.2-2.9)
- C-R order, Figure 2.2-23 .

Equations (2.2-2.6) and (2.2-2.7) give

am, = amg + ¢ 98P (2.2-210)
aP, = -Ram; + AP, . (2.2-2.11)

T =CR

The last four equations show that the boundary conditions on Figure
2.2-2.4a, depending on the order of resistance and capacity elements, give
completely different models for pressure and flow dynamics. The C-R order
is obviously not satisfactory because in it the componenis of time lag,
Tdam,/dt and TdAP,/dt are lost. For the second pair of boundary
conditions we can draw similar conclusions.

b) Am; and AP, are given. Determine Am, and AP,.

- R-C order, Figure 2.2-2.2 .

Am, = Am, - C % (22-212)
AP, = RAm, + AP, . (2.2-213)
- C-R order, Figure 2.2-23 .

T dg“? + Amg = Am, - C dcﬁp 2 (2.2-214)
T d‘c‘lf" + AP, = RAm, + AP, (2.2-2.15)

Now the R-C order does not reproduce the dynamics {aithfully enough,
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because time lag elements have disappeared from its dynamic model.

Therefore, when we approximate a pipe with elemenis of resistance
and capacity, we must take care of the boundary conditions. Where a
pressure change is given we must put an element of resistance, and on
the end where flow rate is given we put capacity.

In practice we often use the solution that the total pipe resistance is
divided into input and output pipe resistance with a capacity element in
between. This arrangement is shown on Figure 2.2-2.5.

my

Fig. 2.2-2.5 Pipe approximated with input and output 1esistance and
capacity element

The equation for the conservation of mass and two equalions for the
conservation of momentum for the order shown on Figure 2.2-2.5, in linear
form, are as follows

Am, - amy = C ddifs . (2.2-216)
AP, - APy = RiAm, , (2.2-2.17)
APg - 4P, = Ryam, (2.2-2.18)

¢} A m, and AP, are given. Determine Am, and AP,
- Ry - C - R, order, Figure 2.2-2.5 .

Rearranging the last three equations we get
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Te %%n—z * Amp = Amy - C %& : (2.2-219)
T2 dgfl + &Py = RiTe dﬁf“' + (R, + RJam, + AP, (2.2-2.20)
TZ = ch

If we compare the last two equations with Equations (2.2-214) and
(2.2-2.18), we see the following differences. Time constant T, is smaller than
T, and there is also a derivative dependence of pressure P, on mass flow
1ate m,. We thus have a properly that is lost in the R-C combination.
Resistance division is allieady a step towards distribution, towards
something that is in fact distributed along the pipe, but in this parnt of the
book lumped in one place. Thus we must believe that the approximation
in Figure 2.2-2.5 is better than that in Figure 2.2-2.2, and the model in the
form of the last two equations closer to the 1eal behavior of flow rate am,
and pressure AP,

d) AP, and Am, are given. Determine AP, and Am,.
- order Ry - C - R,, Figure 2.2-25 .

After reanrangement Equations (2.2-216) - (2.2-2.18) get the desired form

dAm‘ dAP|

TI dt + Am, = Am2 + C dt , (2.2_221)
T dgfz + APy = AP, - (R,T, gl_g_:}\_z + (R, + Ro)am,) (2.2-2.22)
Tl = R|C

Now T, is smaller than T in Equations (2.2-2.8) and (2.2-2.9), and like in
c) there is a derivative dependence of pressurte P, on mass flow 1ate
change m,.

Here we must be complelely clear and express our feeling that
approximation will be bseltter if we divide the pipe into even more
1esistance and capacity elements, but the addition of new capacity
elements would increase the order of the system. We must also say that
there are no exact analytical criteria about when and into how many
elements specific pipes should be divided. In these contemplations we
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can use the fact that time constanis linked with gas and steam flow are
small and in practice rougher approximations (R-C or C-R), or even statical
1elations, will satisfy. What has just been said is true unless we have
periodic (oscillatory) processes, which are not included in this model
because we neglected inertia (I = 0).

Finally, it is also useful to represent the dynamic relations between
input and output variables in the model given by Equations (2.2-2.21) and
(2.2-2.22) by matrix transfer functions.

1 Ts+l

APQ(S) T;S*’l - R m“ AP](S)
- (2.2-2.23)
Cs 1
aM(s) Tl'-,;l— —.T.-"'ST AMg(S)
X(s) = B(s) B(s)
R=R +R, .T=%1T.

The upper expression, if we put R, = R and R, = 0, from which follows
T = 0. is a matrix presentation of case a) in this example.

Before we determine the numerical value of the time constant for an air
pipe in the following example, we must say that there is a complete
analogy belween the dynamics of a gas tank and a pipe through which
gas flows if there are very small pressure differences in the pipe and if
the flow is far from critical. With regard to the value of the time constant,
it will be smaller than the constant that characterized the gas or steam
tank dynamics, not only because of the usually smaller capacity but also
because of the much smaller resistance the pipe offers to flow.

Example 2 Calculation of dynamic coefficients. R, C, T

Air of density o = 116 kg/m® and kinematic viscosity v = 15.7107% m?/s
flows at a velocity of 20 m/s thiough a pipe of diameter 200 mm and
length 100 m. The pressure in the pipe equals external pressure and
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temperatute $ = 0 °C, the pipe roughness is ¢ = 01 mm. Determine time
constant T that characterizes the process of flow and pressure change in
the pipe.

As the pipe has no pump or valve, T will be determined only by
resistance to flow through the pipe. T = RcC.

For flow through the pipe and for small pressure differences the
calculation of the pressure drop due to friction in the pipe runs in the
same way as in the case of liquid. The calculation itself follows, in which
) is calculated from the Altshul formula.

L m? —
sP. ‘g A " K.m
2P
Re = _H_‘Z.
_wd 20002 s
Re = — = mo—ts=s = 0265 10

2
A= % = 0.0314 m?

m = Awp = 0.7285 -k;g— :

A= Ol (5 ¢ 3—2)025- 00174

P, - ooma 100 0TS pqiy N
R = 5533.8 gg/rl/“;

C - ;’s - 28?;12402 - 3.747-107% k—g—ﬁl‘z .

T=R.C=02013s

2.2-3 FLUID FLOW

In the previous analysis of liquid, gas and steam dynamics the models
were obtained after assumptions that narrowed down their field of
application and values. However, those models made sense and can
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answel questions concerning basic dynamic processes for very many
devices and plants. Liquids. however, do possess the property of
compressibility, which was neglected in 2.2-1 by making C = 0. The
consequences of that property ate the known phenomena of periodic
oscillations of the liquid column, i.e. water hammer effects. Gases, in spite
of their small density p, nevertheless possess kinelic energy, and
momentum (Mw) during their flow, which was made equal to zero in 2.2-2,
cannot always be neglected. In short, it is desirable to derive a model for
dynamic changes of mass flow rate and pressure in a pipe for an
arbitrary fluid, not neglecting either its compressibility or its
momentum, i.e. the kinetic energy a flowing mass of fluid possesses. This
will be done in the following lines, and it will be shown that the
preceding models are only special cases of the one obtained for an
arbitrary fluid with properties of capacitance (C). resistance {(R) and
inertance (I).

Also. when the processes of fluid flow are later regarded as processes
with distributed parameters in Section 3.3, we will get models whose first
and roughest approximation will be equal (o1, at least, similar) to the
equations derived here, for which all the properties were considered
lumped in one point in space.

Example 1 Dynamics of fluid flow. Periodic processes

Through a pipe with solid walls, of length L and cross-sectional alea
A, flows m kg/s fluid at a velocity w, density p and temperature 3.

1) Derive the linear model for mass flow rate and pressure changes at
the inlet and outlet cross-section for the following boundary conditions:

a) AP, and Am, are given,
b) AP, and Am, are given.

2) For case a) derive a model in the form of matrix state-space
equations, and a matrix transfer function representation.

la) For the given input variables the pipe can be shown by an
arrangement of elements as presented on Figure 2.2-3.1.
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ui=R R : R e | R _
my my Up;=m;,

Fig. 2.2-3.1 Fluid flow with the properties of resistance,
inertance and capacitance

Here also, analogously to the earlier procedures, we formulale
equalions for the conservation of mass and momentum

dM _ d(Vpg)_ V dpg

MoM T T Ta T Re Q@ (2.2-3.1)
(P, + 8Py - 8Py - 3P; - P)A = % -
) ALpdm LT (2.2-3.2)

dt dt

The upper equations are nonlinear and if they are linearized (again
taking an = 0, aA, = Q), we get the following two egquations

Am, - Amp = C dcﬁpz . (22-3.3)
L dAm
AP| - APZ = RAm, + A_ T' . (22'34)
L
I = r

In the general case R = R, + R, + |Rpl, compare the derivations for
liquid flow from Section 2.2-1. The upper two equations give the desired
model in the following form

2
Ic ddz:fz + RC ddAth* AP, = AP, - (1 dam, + Ramy) . (22.35)
2
IC ddli;ﬂi + RC ddAtml + Amy; = C %tf_‘ + AM, . (2.2-3.6)

For the first time in this book we have obtained differential
equations of the second order. There are thus two possible mass
or energy storage elements. Truly, fluid is compressible and fluid
mass can be slored in the given volume V. This property is represented
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by element C on Figure 2.2-3l. But fluid mass storage also represents
polential energy storage, as will be seen from further discussion. Equation
(2.2-3.1) can also be written

d(vpr,) 1

dl "'_R"s—' . (2.2'3.7)

my - Mp =

The term VP, has the dimension of energy Nm and is a measure for
potential energy change in the pipe volume V resulling from pressure
change P,.

Similarly, an analysis of the equation for the conservation of momentum
indicates changes in kinetic energy. If we introduce new symbols, (2.2-3.2)
can alsc be written

PA = F = M % . (22-38)

5P denotes the total pressures difference acting on the fluid mass in
the pipe. and F the foice that causes the displacement of that fluid. If the
fluid flows at the velocity w,, then il passes the path dz = w, dt in a time
period dt. lf the last equation is multiplied by dz, we get

1

dw. A
2

Fdz = M hryend W‘dt = M(dW1) Wy =

a Md(w,®) . (2.2-3.9)

Let the fluid mass, which is in position 2z, at the moment t,, move into
position z under the influence of force F, and let ils velocily changes from
wyo 10 w,. Integration of the upper equation gives

4 M wy
fFdz = 2= [d(w) . (2.2-310)
20 Wio

W Mwd Mwet e (22-311)
2 2

The integral on the left-hand side is work W that the pressure foices
would realize if mass M moved from 2z, to z, and that wortk would be
ttansformed into kinetic energy. In the case of a pipe of length L,
changes in any of the pressures (which represent a change in force F
that acts on the fluid) do not cause the mass of fluid M to move, but lead
to the compression or expansion of the fluid in pipe volume V. This, in
turn, leads to an energy-form change-kinetic into potential for compression
and potential into kinetic for expansion.
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It is not difficult 1o see that this is an oscillatory (periodic) process. Let
m,; increase by Am, = 1 at t = 0. From (2.2-3.T) pressure gradient P;
becomes negative and P, (the potential energy of the fluid in the pipe)
decreases. This makes the total pressure difference P increase, and from
(22-3.8) the velocity w, of the fluid at the entrance increases (i.e. its
kinetic energy increases). Because of an increase in m, gradient daP,/dt
remains negative, but its absolute value decreases and equals zero at the
moment when m, = m + Am,, i.e. for Am, = Am,. The process does not end
here because pressure P, has decreased by AP, and 5P is slill positive:
consequently the velocity w; (the kinetic energy of the fluid} continues 1o
grow. Kinetic energy will increase until P, returns to its initial steady
value. At tha! moment 3P = 3B, or AP = 0 and d(aw,)/dt = 0. Howevser, the
process does not end here either, because now m; kg/s of fluid flows in
from the outside with maximum velocity w; = w, + Aw,. Since m; > ma
according to (2.2-3.7) we have an increase in P, This process continues to
repeat itself until friction reduces energy changes to zero and Am,
becomes equal to Aam,.

Figure 22-3.2 gives a qualilative presentation of changes in the
variables Am; and AP, in r1eal conditions (friction present) for the
described case of increase in fluid consumption in the outlet section for
am, = 1 kg/s. Figure 2.2-3.3 gives the course of the same variables in the
case of pressure increase AP, = | bar at the pipe inlet.

.APzA

"INz /4 8 Ne_0 12 W17 18 20 t

+

Fig. 2.2-3.2 Periodic changes in mas flow rate at pipe inlet Am, and
pressure at pipe outlet AP, in the case of increased fluid
consumption Aam, = 1 kg/s
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Fig. 2.2-3.3 Periodic changes in mass flow rate at pipe inlet Am; and
pressure at pipe cullet AP, in the case of increased inlet
pressure AP,

The following shorter derivation shows that if there is no friction, ie.
no energy loss, state changes of fluid in a pipe 1eally conserve the
energy (it only changes in form) the fluid contains within it. With R = 0,

Equations (2.2-3.3) and (2.2-3.4) become

AMy - Am, = C dczixth , (2.2-3.12)

AP, - AP, = 1 S5m (2.2-313)
dt
If we divide the upper equations one by the other we get
Am. - Amg _ C dAPg (22_314)

AP1 - Apg - T dAm|
If outside disturtbances do not influence fluid in the pipe. i.e. with Am,
= 0 and AP, = 0, (2.2-3.14) can also be written

L odtam® + S dap =0 . (22-316)
20 20

In the last equation we divide both sides by fluid density ¢ in the
steady state. This, of course, does not change the result. but leads to the
desired form for the final expression. From that equation it follows directly

that
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lpam?  CoaPy?

5 > = const = E, . (2.2-3.16)
e — I C
lg ==, Cq= =
KE PE (lo==.Co==)

The upper equation is the law for the conservation of eneigy. A
dimensional analysis shows that both the terms on the left-hand side have
the dimension of energy (Nm), the first term representing kinetic energy
change, and the second potential energy change in the fluid. In this
frictionless case the periodic responses shown in Figures 2.2-3.2 and 2.2-3.3
would not be damped and oscillations would continue, since the initial
energy E, would always be preserved in the {luid, with undamped
amplitudes until infinity.

Equations (2.2-3.5) and (2.2-3.6) are the most general form of the model
for fluid flow dynamics from which models for gas or steam flow (I = 0) or
for fluid flow (C = 0) are obtained directly. If we insert I = 0. into those
two equations we get Equations (2.2-2.8) and (2.2-2.9) from the seciion on
gas flow. If we want to observe changes in liquid flow due to inlet and
outlet pipe pressure changes. inserting C = O into (2.2-3.8) gives us a
model like in Equation (2.2-119).

I If Am, and AP, are given, the following sequence of elements
makes it easier to get a dynamic model for fluid state changes.

R R =R
1 C 1 I R 1°n
Ug=m, m, my

Fig. 2.2-3.4 Fluid flow with the properties of capacitance,
inertance and 1esistance

Using the same assumptions as in case a), and analogously with
Equations (2.2-3.3) and (2.2-3.4), we can wiite
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daP,

am, - Am; = C (2.2-3.1T)

L dam
AP| - Apz = RAmE + T at 2

(2.2-3.18)

Rearrangement of those equations gives the desired expressions

2
e85 Re280 4 4Py - 4P, 4 1 250, RaR, (22-319)
dzAmg dAmz dAP;_\
e 4R . ReSEM2, Am, - am, - ¢ 24 (22-320)

2) To 1epresent the model from la) in the form of state-space equations
we must first determine which variables are considered inputs and which
outputs, and which represent state variables. Now this selection is not
difficull as it is completely natural for the input vector to be composed of
AP, and Am,, and the state and output veclor of AP, and Am, We will
thus have

AP, AP,
X-Y-= . L
Amy, Am

In formulating matrices K, B and € (D = 0 because there is no direct
action of © on Y), it is. best to start from Equations (2.2-3.3) and (2.2-3.4)
from which we immediately get expressions for AP,' and Am,". Wiitten
differently, those equations are

! | 1

AP, 0 el AP, 0 el AP,
= + , (2.2-3.21)
1 R 1
aAmy -— -—]lam, —_— 0 Am
1 1 I
X'=AX+BU
Apz 1 0] Apg
- , (2.2-3.22)
Am, 0 | Am

Y=0X
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The eigenvalues of matrix X point to transient phenomena and it would
be useful to determine expressions from which they can be calculated.
From Equation |AI - K| = 0 we get

-xh-}i“-llt-lc:xhnc:“l-o (2.2-3.23)

It should be observed that the upper equation is the same as the
characieristic equation of the ODE (2.2-3.5) and {2.2-3.6).

The transient functions from Figures 2.2-32 and 2.2-33 and the
differential equations (2.2-3.5) and (2.2-3.6) show that in this case we have
the standard behavior of a second-order (proportional) system that shows
periodic characteristics. We will, therefore, introduce symbols for natural
oscillation frequency w, and the damping coelficient E.

1
= —— s 2.2‘3.24)
Wn /I— (
—— Wp . (2 .2'3.25)

‘TR 2
With those variables the characteristic equation (2.2-3.23) can be written
in the usual form for 2nd-order processes

A2+ 2Boph ¢+ wp2 = O (2.2-3.26)

The eigenvalues are determined by the expression

M2 ot -L(Bfg-l)’-EWn*wnm-oth
: 21 IC *4IC
(2.2-3.27)

Hete we will not enter into a more detailed analysis of dynamic
features because the key properties are completely obvious from the
solution of the upper equation. For 1eal cases A will always have a
negative teal part, ¢ ¢ 0, because Ew, 3> 0. In theoretic cases, when
friction is neglected (R = 0), £ equals zero and so does, therefore, the 1eal
pat ¢ = 0, ie. Az = wy = £(IC)°3% j. The -eigenvalues are
conjugate-complex pairs on the imaginary axis and the system oscillates
without damping with fiequency w,. In the practically most frequent case
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we have 0 ¢« E ¢ |, and these are the already shown damped oscillations.
Increasing the damping coefficient leads to a decrease in oscillation
frtequency, and in the case of £ > | both mass flow and pressure changes
are no longer periodical. The expression under the square root is no
longer imaginary and the solution are two negative and real sigenvalues
. This boundary case when the periodic character of the transient
process ends, i.e. when £ = 1, is determined by R 22/17_C.

Finally., as presentation in the form of transfer functions has both clarity
and conviction, the model given by Equations (22-321) and (2.2-3.22)
should be translated into the complex region using the alieady mentioned
transformation G(s) = € (sI - B)' B + D.

Matrices €, B and D have alieady been determined and only the
inverse matrix of matrix l(sl - H)l is unknown.

Sv— =

- _ adj(sE-R) 1 ! c
(1- B)" = SIGER) ™ deiGER) | | | (2.2-3.28)
1
det(sI-B)= s2 + g s -1 (2.2-329)

T IC

The final expression, after the necessary multiplications demanded by
the upper transformation for obtaining &s). is as follows

1 -(Is+R)

AP
_ ICs?+RCs+l  ICs?+RCs+l 1) (2.2-3.30)

Cs 1
AMA(s
ICs%RCs+l  ICs+RCsel 2

¥(s) = 6(s) U(s)

APz(S)

AM|(S)

This is the most general form of matrix transfer functions &s) for fluid
flow dynamics. From it can easily be obtained the special cases from the
preceding two sections. If we neglect fluid mass inertia (I = 0), the upper
equation gives matiix @s) from Equation (2.2-3.23), intoc which we must
insert Ry = R, R, = 0, T = 0 to make it valid for case a) from Example 1,
Section 2.2-2, on gas and steam f{low. If, howeveir, we neglect the
possibility of fluid mass storage (C = 0} in the last equation, we get

AP; = APy - (Is + R)aM, , (2.2-3.31)
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AM, = AM, = AM (2.2-3.32)
1
R
AM(s) = Taxl (aPy(s) - aPy(s)) . (2.2-3.33)
=L
T=%x

The last equation is completely the same as the Laplace transiormation
of Equation (2.2-3.20) from the section on liquid flow, where the possibility
of mass storage was also neglected because we worked with ¢ = const,
ie. C = 0. In the upper expression, unlike in (2.2-3.20), changes in the
number of revolutions of pump An and in the cross-sectional area of the
control valve aAA, are missing. These are variables that were neglected at
the beginning of the present section.

The denominator of all the transfer functions Gj; (i = 12, j = 12) in
Equation (2.2-3.30) is the same and equal to the characteristic equation of
differential Equations (2.2-3.5) and (2.2-3.6), and also to Equation (2.2-3.23)
for determining the eigenvalues of the system matrix X. The well-known
fact that the poles of transfer functions represent the eigenvalues of the
system matrix A is confirmed.

Example 2 Calculation of dynamic coefficients. R, I, C, T, w, Z

In the case of airflow thiough a pipe, using the data in Example 2,
Section 2.2-2, determine the dynamic coefficients characterizing that
process.

In Example 2 from the preceding section, gas or steam flows through a
pipe of length L = 100 m and cross-sectional area A = 0.0314 m? . We have
already determined capacitance and resistance

C = 3.7474-107% kgr?®/N, R = 5633.78 (N/m?)/(kg/s) .

Inertance 1 is not difficult to obtain from

1=L/A =31847Tm™".
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Natural frequency is

wo = (IC)Y %% =29¢7",

The damping coefficient is
E = RC wn/2 = 0.301

The eigenvalues of system matrix A and also the poles of the transfer
functions are

M2 = -08T19 + 2.425 j .

It is not difficult to see 1o which physical process the natural
frequency w, is related, and what ils real meaning is. We must first
temember that the whole analysis was carmried out for the case of
isothermal state changes in which the velocity of sound (and that is the
speed with which pressure and mass flow disturbances propagate through
the pipe) is determined from the (generally known) expression

Cs = YRS = 287-292 = 289.5 m/s

In practice fast disturbances in fluid slate propagate in adiabatic
conditions. This. however, does not change anything in the present
analysis. As we said earlier, we then work with polytropic capacitance C,
= C/n instead of with isothermal capacitance C. In the adiabatic case for
n = x and for the velocity of sound we have cs = yxR$ .

The time necessary for the disturbance, propagating with the velocity
of sound cg to pass through the whole length of the pipe L, is

T, = 71:'? - 0346 5 . (22-3.34)

The natural frequency oscillation is equal to the inverse value of time
TL

on = _'ITL_ =29 5™
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That the upper expression satisfies can also be seen from the following
derivation

= = = = =5 . 2.2-3.35)
TR T v L LT
A RS

In engineering literalute we very often encounter, besides the
coefficients we have already introduced and used and the just-mentioned
time for disturbance transfer along the pipe T|. so-called impedance
defined as follows for fluid transport

= = . (2.2-3.36)

1=2Z T . (2.2-3.37)
T .
- (2.2-3.38)

IC = T2 . (2.2-3.39)

Finally, to enable comparison with the case of spatially distributed
processes for the conditlions belonging to Figure 2.2-3.4, we give the
matrix transfer functions

Is+R

APy(s) ICsZ:RCs+1 ICs2+RCsl AP(s) : )
- 2.2-3.40
AM,(s _Cs _r AM,(s)

ICs2+RCs+l ICs2+RCs+l



Qb CHAP. 2 LUMPED PROCESSES

2.3 HEAT PROCESSES

The field covered by this term is very wide and the variety of devices,

objects and systems in which processes of heat production, transfer and
accumulation occur is so great that we must limit ourselves to the basic
processes we meet in technical practice. Deriving mathematical models
and analyzing the dynamics of such basic processes is a step in the
direction of comprehensive insight into much more complex phenomena.
Like on the preceding pages, here itoc only processes with lumped
parameters will be studied, but we will also try to show that the models
obtained are in fact only rougher (which does not in any way mean bad,
but very often of great use) approximations of cases in which heat
properties change throughout a space volume.

Heat exchangers are one of the most {requently encountered parts of
plants, and much of this chapter will treat the dynamics of heat exchange.
Heat exchangers are usually devices with metal walls whose thickness is
kept as small as possible, only as much as is necessary to give strength.
Since metals are very conductive, in our derivations we will often assume
that the thermal conductivity coefficient A is infinite. The result of this
assumption is that the temperature of the wall is the same across ils whole
thickness (3w(z) = const.).

The derivations for heat transfer through a wall will in most cases be
valid both for plane and for curved walls of pipe exchangers. In them the
wall thickness is so small compared with the pipe radius thal neglecting
curvature effects will not inttoduce essential errors into the models
obtained. An exception are high-pressure, thick-walled pipes for which the
above assumption does not hold.

As an example of a markedly nonlinear process we will study radiation
heat transfer, and after linearization of the initial model the linear and the
nonlinear time responses will be compared.

Finally, at the end of this section direct heat exchangers will be
modeled. These are usually tanks (well or not-so-well insulated, and with
thicker or thinner walls, depending on the pressure under which the
process develops) in which several mass flows are mixed and the mixture
heated by heating elements (electriic, steam and so on). In the process of
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modeling we will begin with the most elementary example with many
approximations, and by gradually discarding those initial assumptions it
will be shown how the model of dynamic temperature change grows in
complexity.

Example 1 Heat transfer through a wall

Figure 2.3-1 shows a process of heal transfer through a wall between
fluids 1 and 2.

7/ e

Fig. 2.3-1 Heat transfer through a wall

a) Derive a model describing the dynamics of the wall temperature
depending on changes in temperatutes 8, and $8,. The basic
assumptions are:

- the thermal conductivity coefficient through the wall ) = o,
which means- that 8, is constant across the whole width of the
wall,

- heat transier on both sides is convecitive,

- the coefficients of convective heat transfer «; and «, are not
functions of temperature,
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- mass fluid flow rates m, and m; are constant (therefore, «, and
x, are also constant).

b) Determine the transter functions relating heat flow transierred onto
fluid 2 with temperature.

a) The equation for the conservation of energy for a wall of
surface-area A is

dE

ar {2.3-1)

€ - 8 =

e, and e; are heat {(energy) flow rates brought to the wall and led from
it, and E heat (energy) stored in the wall.

ay = Aq| = A(!1(31 - a‘w) f (23'2)
e, = Aq2 = Auzcew - 82) . (2.3'3)
E = Mu = ASPCWaw . (2.3'4)

The last three equations, together with the first, give

p8cw d&w _ o o)
oty dt + 9y = oty 0 + T T 82 . (2.3-8)

We have obtained a linear ODE so there is no need for linearization
and introducing the symbols A. Equation (2.3-5), as long as the initial
assumptions are true, is valid both for real temperature changes and also
for changes in the deviation of those temperatures from the initial steady
state.

As in the preceding cases, here we can also show that the constant
beside 8,, has the dimensicn of time and., therefore, represents the time
constant T of heat transfer. Its physical meaning becomes clear from the
following formulas, in which the same delinitions for capacitance C and
rtesistance R are used as in earlier discussion.

Capacitance C equals the ratio of change in stored heat {energy) E io
change in heat effort - temperature 8. so (2.3-4) gives
dE

C = m = Ajpc = Mc (2.3-6)
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Resistance R equals the ratio of change in heat effort (lemperature) to
change in heat flows e, and e,. As resistance io heat transfer exists both
on the side of fluid | and on the side of fluid 2, the total resistance will
depend on both the individual resistances R, and R,. Equations (2.3-2) and
(2.3-3) give

- d8w 1 )

R, = 3o " A (2.3-Ta)
_ dsw 1

Re = Qo = “Ra (2.3-Tb)

The fact that R; is negative represents the physical fact that when
temperature $,, increases, the heat flow rate e, on the wall decreasss. Now
we can show the meaning of constant T.

_ sec _ _Asec  _ c _c
b o+l A(!ﬁA(!g 1__ + 1 _l_
Ryl R. R

= RC . (2.3-8)

Equation (2.3-8) can conveniently be shown in block diagram form and
this structure of blocks is present in all first-order (proportional) systems. It
is useful to compare this piesentation with Figure 2.1-2.T.

+ -
3
1
iRy
1 6e [ E {1 E |1 Jhw
+ B c c
1
R L
IRl Ry
3 L
N~

Fig. 2.3-2 Block diagram of temperature change dynamics
in pipe wall 8,,

b) The transfer functions relating heat flow rate e, to fluid 2 depending
on temperature change are obtained after carnrying out a Laplace
transformation of Equations (2.3-3) and (2.3-5). If the expression for é(s)
from the transformed Equation (2.3-8) is inserted into the transformed
Equation (2.3-3). after rearrangement we get
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K(Tps+])

Tl 0,(s) . (2.3-9)

K
Qxs) = Toal (s} -
Q,(s) is a symbol for the Laplace transformation of heat flow 1ate e,(t).

In Section 3.2, when the heat transfer process is observed as a process
with distributed parameters, for the case of a finite A, Equation (3.2-62) will
be an approximated transfer function identical to upper Equation (2.3-9).
Here we must indicate that e,(1) will have a derivative dependence on
temperature change $, of the heated fluid. A more detailed presentation of
those transfer processes is given in Section 3.2.

Constants K. T, and Ty are given by the expressions

K = f—l‘% A ., (2.3-10)
T2
. _bec ;
Tn = Seas (2.3-11)
Tp = 22 (2.3-12)

oy

From Equation (2.3-8) for T we can see that this constant, besides
depending on other variables, also depends on heat transfer coefficients
«; and «,. The determination of these coefficients is the most critical part
of the calculation since the values of the other constants in (2.3-8) are not
difficult to obtain. Here, however, we will not enter the piroblem of
calculating coefficients of convective heat transfer. Whole books have
been wrilten on this subject, thermodynamic atlases, tables and the like,
so for these needs we 1efer the 1eader o specialized literature. But it is,
nevertheless, necessary to study some typical technical cases and see the
range within which time constant T changes for such processes.

Let 80 °C temperatutre water flows through an uninsulated hot-water
pipe whose walls are § = § mm thick. If the heat transfer coefficient to the
surrounding air is «; = 10 W/m? ,, and to the internal surface of the pipe «»
= 230 W/m? ., for p = 7850 kg/m?® , ¢ = 0.50 k]/kg., the time constant T is

spC 7850-0.005- 800

T. ot 3000 = 8117 s

The superheater pipe of an electric plant steam generator of thickness
8§ = 0.005, ¢ = 500, and with coefficients «; = 60, a; = 2400, has the time
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constant

_ 1850-0.005- 500

T = —0+2400 =198 s

These two simple numerical examples clearly show that T will decrease
with an increase in the heat transfer coefficients, i.e. with a decrease of
the resistances to heat transfer. It must also be obsetved that in the case
of great. differences in coelfiicients «, the time constant is chiefly
determined by the one that is bigger. lf we neglect «, in the second casse,
T becomes T = 8.77, which is only 2.5% more that the original time
constant.

Up to now, on the basis of the first assumption that 1 is infinite, we
completely neglected the resistance to heat conduction through the wall,
and T was determined only by resistance to heat convection. If boundary
conditions in the form of foiced heat flow aie given on both
boundaries of the wall, and if thermal conductivity coefficient a» is finite,
in practice we use a transfer function showing the dependence of heat
flow rate e,(t) on heat flow rate e/t) on the "warmer" side of the wall

Qus) 1

Ofs) ~ Tystl (2.3-13)
2
Tw = 328 (2.3-14)

This transfer function and the time constant of the pipe T. will be
derived in Section 3.2. In the dynamic sense, the wall behaves like a
first-order (proportional) system, and for a superheater steam generator
pipe with » = 465 W/mK

pc82

Tw = = ].O55 s

Finally., in the wealth of possible different cases one of the more
common phenomena in pipe heat exchangers is that the fluid mass flow
rates m, and m, are not constant, but can, in unsteady operation,
substantially change in magnitude. In such cases ths fourth assumption is
no longer f{fulfiled and we cannot work with constant values for
convective heat transfer coefficients «; and ap, since they depend to a
great extent on the rate of fluid flow. In practice we will, thus, very often
use the following expraession to determine « for single-phase fluids flowing
through pipes
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A=Kt o, (2.3-15)
n=08 .. liquids
n=056 ... gases

If the fourth assumption is not fulfilled, Equation (2.3-8) is no longer
linear, and if we insert into it the expressions (2.3-15) instead of «, after
linearization we get the following mathematical formulation for the
dynamics of wall temperaturte change for changes in the four possible
disturbance variables

L N WL T WA A8, + 203w am, 223w coam,

arap  dt oyt atan oytp oyt
(2.3-16)

Ci= KnmMt Li=1,2 . (2.3-17)

If we cancel the fourth assumption, the expression for T does not
change, but becomes dependent on the initial steady state and twc new
distutbance variables appear - mass flow rates m; and m,.

Many more different cases could be analyzed, which will not be done
here because we consider that this would not bring any essentially new
discoveries. If the reader wants to gain deeper insight into the models
shown here, he should. turn his attention to an analysis of the results in
Section 3.2. There the different phenomena are examined in more detail
because of different boundary conditions on the surfaces of the walls. In
this section. to continue our analysis of processes of heat transfer, we will
show the typical nonlinear case of heat radiation and compare the
responses of the original nonlinear model with the responses of the linear
model.

Example 2 Radiation heat transier

The two nearby parallel walls in Figute 2.3-3 exchange heat by
radiation after, at t = O, the temperature of wall | undergoes step increase
from 0 °C to 85 °C. At t = O the temperature of wall 2 is O °C. The mass of
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the wall 2 is Ol kg and its specific heat ¢ = 1000 J/kg .. The coefficient of
emission are equal and are ¢ = ¢ = 0.065. Both the walls are insulated
towards their surroundings and only exchange heat with each other. A, =
A, = 1 ma.

a) Determine the time constant showing the speed of wall temperature
increase.

b) Compate the real nonlinear response with the response of the linear
model for cases of step increase in wall | temperature by: 8.5 C and
85 C.

Fig. 2.3-3 Radiation heat exchange between parallel walls

a) The conservation of energy equation for wall 2 is

_ dE;

OZ = di . (23‘18)
1

= 4 4 R
Qz = Ciz2 (34* - 829 T (2.3-19)
Ez = Mgco8, . (2.3-20)
The three upper equations give the model demanded

ds, Ciz s4_ Ci2 4 )
MeCoqr * 1007 %2 = o0+ ™ (23-21

The result is an ODE of pronounced nonlinearity describing the
dynamics of wall 2 temperature change 38, Linearization of the upper
equation gives
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33
Mac;3 %z;\.sz’ A8 = "%'La— A8, (2.3-22)
4C 2 :
Crzpo07
B
T

Time constant T, if both the numerator and the denominator are
expanded by 8, has a clear physical meaning

b . M,c,8, _ accumulated heat
T = 4 To . To c 3,4  heat flow jate (2.3-23)
#100*
If wall 1 is a black body, ie. C, = C, the expression in the

denominator really does represent the heat flow 1ate between surfaces |
and 2, For the given variables il is not difficult 1o determine that C;, will
be C,; = 01904, and

T = 0.1-1000-273  _ 645 s

4-0.1904-2.73*

b) The analytic nonlinear solution of Equation (2.3-21) has the following
explicit form for time t

3‘ + 92

8 8, 1 9y - 82
(arctg 5 arctyg 5, +—2——ln -———-——-—8‘ 5 ). (2.3-24)

8 - B2

- MgCglOa
Ci2 28,3

The linear solution is in the already known form for a first-order system

V-

1
Aaz = A3|(1 - 9645 ) . (2.3‘25)

If we use Equations (2.3-24) and (2.3-25) to calculate the 1esponses for
increases A% = 85 “C and 85 °C , and show them graphically, we get the
diagram on Figure 2.3-4.

From the following r1epresentation, which is a graphical solulion of
Equations (2.3-24) and (2.3-25) for the given disturbances, we can see that
the differtence between the nonlinear and the linear responses increases
with an increase of the disturtbance value.
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Fig. 2.3-4 Response of the nonlinear and the linear model
in radiation heat exchange
—— NL A8, =85 C - NL A8, = 85 C

The ordinate has values for both the disturbances and as the scale is
the same {only 10 times larger) one curve is sufficient for both cases of
linear model response. For the nonlinear model, however, we get two
different curves and. as we expected, the difference from the linear
response is greater for the greater deviation a8, = 85 °C from the steady
state.

Example 3 Direct heat exchanger

In direct exchangers, heat is transferred by the direct mixing of
several mass flows of different temperature. In the tank itself addilional
heating also takes place by electliic, steam or other heaters. Figure 2.3-5
shows one such exchanger, and the sign for a mixer symbolized the
complete stirring of the liquid in the tank and a homogeneous heat field,
ie. it is considered that the temperature is the same in the whole volume
of the exchanger and that liquid of that temperature flows out of the tank.
Derive a mode!l of dynamic temperature change al the tank outlet with the
following assumptions:

- inlet and outlet mass flow rates are constant, i.e. m; = mp = m,
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- the tank is insulated,

- thete is ideal mixing 8 = 8,,

- the liquid has a constant specific heal cp = const,,

- the term P v in the expression for internal specific heat is neglected
for the liquid, u =i - Pv.ie. u=1i=cp8 .

Fig. 2.3-8 Insulated direct heat exchanger

The equation for the conservation of heat has the usual form
dE

e + Qel - € = 9t (2.3-26)
e = mcp & . (2.3-27)
e = mcp $o . (2.3-28)
E = Mcps, . (2.3-29)
When we arrange the last expression, we get

Tc:‘;" . 8y = 8 + mlcp Oel . (2.3-30)

Time constant T = M/m, and if both the denominator and the numerator
are expanded, we get
Mcpd, _ stored (accumulated) heat

mcp8, B heat flow rate : (2.3-3D

The upper assumptions give a standard linear ODE for a f{irst-order
{proporiional) processes. If m = const. is not satisfied, the equation is no
longer linear because the products ms;c, and m8icp are no longer linear
expressions.
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To enable comparison with the approximated transfer functions in
Section 3.2, Equation (2.3-30) will be transformed into

8o(s) = —gr———8i(s) + —pr2—Qells) . (2.3-32)

The Iiollowing lines will show how ‘“insignificant” changes in
assumptions change essentially the mathematical model, thus showing all
the importance of a careful choice of simplifications when the model is
being formulated.

Derive a dynamic model using all the initial assumptions except that
the second one is changed and two new ones are added

- the tank is not insulated,

- the accumulation of the tank wall is neglected (a thin-walled tank),

- the coefficient of thermal conductivity through the wall is infinite.

Fig. 2.3-8 Uninsulated direct heat exchanger

The equation for the conservation of heat has the following form

chsi + Oe] - (!vAv(So - 8v) - mCPSO = MCp'g<jst_o' . (2.3'33)
After arrangement we get

gﬁ, _ mcp I avAy .
T dt ¥ 80 h ch+avAv 8‘ ¥ mcD’(!vAvoel ¥ ch+avAvv (2.3 34)
T _MS_ (2.3-35)

mc p" avA v
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Again this is the dynamics of the usual first-order {proportional) system,
excep! that the constant T has changed.

If we leave out the assumption about the negligible accumulation of
the exchanger wall {(and keep all the other assumptions), we must
formulate two balance equations since we now have two possible
heat tanks - the liquid in the tank and the wall of the heat exchanger

itself:

- liquid

mcpdi + Qe - xiA|(96 - 9w) - mcpd, = Mcp%—'(}% (2.3-36)
- wall

widi(80 - Sw)- wAy(8w - 8 = chw%ﬂ (2.3-31)

As long as the conveclive heal transfer coefficients «, and «; do not
depend on temperature, the upper system of equations is linear and can
be written directly in the form of matrix state space equations

v - Incprajhi ol m 1 s
80 - So O i
M M M Mc
Acp Acp A ’ p A |
XA} __jApraviy 0 0 o 8
w MwCw MyCw Sw MwCw v
(2.3-38)

To conclude our analysis of the dynamics of direct heat exchangers,
we will now show a model which assumes that liquid stirring is very
intense. This insures a large heat transfer coefficient « on the
interior surface of the wall. 8, = 35, and with » = @ we assume that there
is only one equation for the conservation of heat

mcpdi + Qe - mcpde = (Mcp + chw)%%—q- . (2.3-39)

After the Laplace transformation we get the following form

! 1
McpMlu ., | (8(s) + —z Qells)) - (2.3-40)
me

90(5) =

G(s)
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It is useful to observe that the transfer function obtained G(s) is the
same as the approximated transfer function given in Equation (3.2-27) in
the section on treating the direct hea! exchanger with thick walls as a
system with distributed parameters.

At the end of our analysis of the dynamics of basic heat processes we
must stress that temperature changes are described as a rule by the
already known equations for proportional systems. Time constant T is here
also equal to the preduct of thermal capacitance C and resistance R, T =
CR. From this aspect heat processes, which are in the physical sense
reduced to processes of heatl storage, are dynamically similar to processes
of mass storage in tanks, and the main difference between these and flow
processes is that heat processes have no inertia. Thus there will be no
periodic, oscillatory state changes in their case.

2.4 MECHANICAL PROCESSES

The motion dynamics of the rigid body, mass point (particle) or mote
complex mechanisms is a classical technical science and a discipline that
is studied in many institutions. Today there is a very varied selection of
textbooks, handbocks, collections of examples and books from that field in
the world, which show both basic and also very elaborate methods and
modeling procedures. As a rule, all these books contain numerous
examples (from the simplest to very complex mechanisms) and are highly
specialized, so it must immediately be emphasized that this section of our
book is notl in any way intended as a supplement, substitlute or perhaps
competition to such books and collections. lts basic purpose, like that of
the preceding sections, is to describe the dynamics of mechanical
processes of the rigid body motion in mathematical forms usual in this
book, and to thus show unily in the dynamics of these and other
processes. With that in mind, the dynamic coefficients of r1esistance,
capacitance and inertance will be redefined and their physical meaning
given.

In this way we will deviate to a certain extent from the usual form of
mathematical models in classical dynamics to which some r1eaders are
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pirobably more than accustomed, but all the examples will be presented in
the (here widely used) form of matiix stale-space equations or, simply. by
systems of first-order DE. This notation has shown itself to be of great use
in designing contiol procedures for modern 1obot mechanisms and
manipulators. For that purpose. namely, to synthesize the whole controlling
assembly - from sensors and logical‘ devices that are buill of
microprocessors or small computer units, to actuators (electrical, hydraulic
ol pneumatic motors) - it is essential to have a model in the very form
that is used in modern control theory, and that is notation in the form of
stale-space equations.

Three basic procedures have become standard in cobtaining models for
the dynamics of the rigid body motion in mechanics:

- the use of Newton's law for the conservation of momentum
- the use of d'Alembert’s principle,

- deriving Lagrange's equalions of motion.

Here we must say thal d'Alembert's principle is in fact only a skilful
transformation of Newton's law, while Lagrange's equations of motion are
based on considerations concerning the conservation of energy. It can be
shown that Lagrange's equations can be derived from Newton's laws, and
without canrying out a critical comparison of the methods, we will only
add that in deriving a model for the dynamics of motion of more
complicated systems it is advisable o do so by the simultanecus use of
Lagrange's equations and of Newton's laws. Both methods must give the
same result.

Before beginning the analysis of specific examples, we must point to
the analogy between the two basic forms of motion in mechanics - the
similarities between translation and rotation. Without any more extensive
explanation. these analogies are given in the following table.
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Table 2.4-1
Translation Rotation

2 displacement angular displacement ¥
w =2 velocity angular velocity w= ¢
a=w =2" acceleration angular acceleration ¢ = w'= ¢"
M mass moment of inertia ]
F force torque M
I=Mw momentum angular momentum L=]e
dMw) . d(jw) .

dt F t - Me

1 2 . . _ 1 2
T = 2 Mw kinetic energy T = —2—]m
W = [Fdz work W= {M,de
P = Fw power P = Myuw

In mechanical systems there is duality in the selection of the variables
of effort (potential), flow and stored variables, and thus also differences in
the physical meaning of dynamic coefficients. This duality results from
whether we select foice or velocity in ftranslation (torque or angular
velocity in rotation) for the variable of effort, and it will be shown on an
example of a simple mechanical system: mass-spring-damper.

We will begin this chapter by describing the motion dynamics of a
body using the simplest example of translation and the usual mathematical
tools. Everything that is done in further examples for cases of iranslation
can, without any reservations, be applied to 1otation as well, using the
above analogy table.

Before setling up the equations it must be pointed out that this section
will in most cases analyze linear processes. This means that the variable
changes will be considered small enough to make nonlinear interrelations
unnecessary. It follows that there will be no linearizatlion, which also
means that thete will be no deviation notation A beside linearized
variables. In cases where we do carnry out lineatization, however,
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previously used symbols will be retained but then it must not be f{orgotien
that the original model was in fact nonlinear.

Example 1 Translation dynamics

Consider a body of mass M, under the influence of force F(1), in
translational motion on a flat surface. In the general case the following
forces resist motion: the force of dry (sliding) friction F, a force
proportional to the velocity of the body (the force of viscous friction) Fj
and a force proportional to the body's displacement F,. Derive a model
that describes the dynamics of displacement z and velocity w if at t = 0
there was:

IstiICz=0

(M)
=]
o}
a
[0

w = W, (IC ... initial condition)

and for the following cases:

a) ideal frictionless motion,

b) motion with the presence of sliding friction,

c) motion with the presence of a resistance force proportional to the
velocity w,

d) resistance force to motion proportional to body displacement z.

r———— z
dz
———— w’ir
FeF k F = Fp=filw)
7 7% R =tiz)
R=Fu=nuMg Iy

Fig. 2.4-1 A body in motion with driving and resistance foices

For each case the model will be obtained from the following basic
expression desctibing Newton's law for the conservation of momentum



SEC. 2.4 113

4
. dMw) _ ,, dw .
; Fi= =3 M3 . (2.4-1)

a) in the case of ideal motion without any forces, i.e. Fj = 0 (i=1.4),
(2.4-1) becomes.
dw _ .
M3-=0 . (2.4-2)
This is an equation with a "pure" integral term for velocity w change,
which with the given initial conditions becomes

W = W, = const.

Since the generally-known relation between velocily w and
displacement z is (also an integral member without lime lag)
dz

—d—l =W . (2.4-3)

it follows that z will continuously increase 1o infinity, i.e.
zZ = th

b} There is a resistance force of diy (sliding, Coulomb) friction, so that
(2.4-1) becomes

dw

Mar

= -uMg . (2.4-4)

A system dynamically equivalent to this example of translation is given
by Equation (2.2-1.2) for the case when the input pump ceases operalion,
i.e. for m = 0. Like liquid level H in that example, here velocity linearly
decreases to zero. It can easily be shown thal the following expression is
the solution of (2.4-4) for the given IC

dz

w = F = Wy - ugt . (24‘5)

Equation (2.4-8) gives the analytical expression for displacement z

z = wot - J{fo? . (2.4-6)
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This process of free translation with the presence of dry friction can
also be shown in block diagram form.

us-pMg | 4 1 w 1 2=y
—_ ] L —_ - —_cJ
M s s

Fig. 2.4-2 Block diagram of translation with dry friction

If we select displacement 2z = x, and velocity w = x, for state
variables, the system of Equations (2.4-3) and (2.4-4) can easily be given
in the form of matrix state-space equations

z ‘ 0 | z 0
- A | [eMe] - (2.4-7)
w 0 o] Lw ™

X'=AX+BU

The eigenvalues of matrix A are equal to zero, Ay = A, = 0, indicating
the presence of the two integral terms without a time lag shown on Figure
2.4-2.

c) Driving force F and a force of resistance proportional to velocity
act on the body

F3 = - Dw (2.4-8)

D is the coefficient of that linear dependence and is also called the
coefficient of viscous friction. Now (2.4-1) becomes

dw

Mdt

+Dw=F . (2.4-9)

This equation is the classical and alieady several times obtained
example of a first-order pioporticnal system for the dynamics of a body’s
velocity w. in which time constant T equals

T-M

(2.4-10)
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At initial moment t = O the velocily is wo and if the numerator and
denominator are expanded by that velocity, the physical meaning of the
constant T becomes clearer.

Mw 1 momentum
= -——Q— = —m— | — -
T Dw, F force (2.4-I)

T is thus the ratio of the total momentum stored to the force that acis
on the body in the steady state observed. lf displacement z is important,
it can, as in the preceding case, be oblained by the simple integration of
velocity w.

i (2.4-9) is compared with the other equations of proportional
first-order systems in preceding sections. it can be seen that velocity w is
the variable of effort or potential, and foice F the variable of flow. The
stored variable is momentum I, = Mw. In this case the capacitance and
1esistance are

. AV _ Mw i}
C = E w M (2.4-12)
.E _w_1 ]
R = F E D . (2.4-13)

and the time constant, as until now, is

«RC = M

T = RC D
If coefficients C and R that have just been introduced are used, the
following block diagram shows translational motion in the case of a

resistance force proportional to velocity.

F(t)+ _ 6F 1 Im 1 w 1 z
- s T S
Fa 1
R

Fig. 2.4-3 Block diagram of translational motion if the resistance
force is linearly dependent on velocity
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The motion described by two OLDE of the first order (2.4-3) and (2.4-9)
can be given as [ollows by state equations

27 [0 17[z

0
5 . [F] . (2.4-14)

wl Lo "mdlwl M

X'=AEX+BU

It is not difficult to solve the characteristic equation to obtain the
eigenvalues of matrix K. They differ from each other and are

)\g=0

x2=-—r\D-4—=-

The first eigenvalue shows the iniegral character of the process of
position change in time, i.e. displacement z. The sscond shows a stable
transient process of a first-order (proportional) system describing velocity
w change due to changes in force F acting on the body.

If we substitute (2.4-3) into (2.4-9)., the model is transformed into the
following OLDE of the second order, which is the usual mathematical
presentation of the dynamics of translational motion and shows
displacement z

d?z dz _ i
M dt2 + D—a—r = F . (24 15)

This way of formulating the model with second-order derivatives of the
displacement variable z is usual and widespiead in classical mechanics.
Thete is, nevertheless., some similarity in the different ways in which
models are formulated by the state-space method and in classical
mechanics. It lies in the fact that both approaches try to obtain a system
comprising DE, only in mechanics it is usual {or them to be DE of the
second, and in the state-space method DE of the first order.

The method we used up to now to present the dynamics of a body in
translational motion is in a way unusual in classical mechanics. Therefore,
this last case will be presented in the manner usual in that discipline.
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As a rule, three standard elements are used to represent mechanical
sttuctures. With their help it is possible to combine and represent
dynamically even the most complex mechanisms, as has been shown, to a
satisfactory degree. They are: an inertia element of ‘mass M. a spring of
constant ¢ and a damper of coefficient of viscous friction D. (Sometimes
and particularly in anglosaxon literature the spring constant is denoted
with S, but in these lines we will retain the standard symbol usual in
mechanics - ¢.) The basic properties of each of these elements are
represented on the following figures and given with the expressions
beside them.

2
. F F
Spring —-1—’\/\/\/\/\/\/\/\/——**—— F=cz=clz -2 (24-16)

- v
Damper Fol 1I I F F - g((z"f" :’:)) (2.4-1T)
Mass F F = Ma = Mfz (2.4-18)

All the elements shown here are also present in the case of rotation,
according to the analogies given in Table 2.4-1.

Torsional spring Mz = cilo -92)-

C Q (2.4-19)
4
Torsional damper p X Mz = Dilwy - w2) (2.4-20)
CM: M, = Do’y - ¢'"2)
_J
. -t
Body with moment Mz = Je =]

dt?
of inertia ] (2.4-21)
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(cy ... loisional spring constant, Dy ... torsional coefficient of viscous
friction).

The above elemenis are linear approximations of 1eal mechanical
objects and are as a rule valid for small displacements. In the case of the
spring the approximation is cormrect if we do not cross the proportional
limit. The viscous damper is a good substitute for energy loss and
resistance forces only in the region of r1eal linear dependence of
resistance force to motion on velocity. Since this is not a book whose
purpose is to examine the validity of introducing these linear elements
into an analysis of mechanical systems, nor to study the range within
which such linear approximations are satisfactory, these elements will in
the further text be used in the way usual in mechanics, taking into
account the fact that their application in fact alieady 1epresenis
linedrization of the task. The last case can thus be shown by the following
combination of elements of inertia and damping - Fig. 2.4-4.

Fig. 2.4-4 Trianslation shown as a combination of elemenits
of inertia and damping

d) Driving force F and a resistance f{orce proportional to displacement
z act on the body.

F. =cz
This case, when resistance is proportional to displacement z, is shown

by the simplest element, a spring. and the following figure represents this
type of translation.
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'l'———— z
dz
Il—o- w‘—dT
|
Flt) ¢
g ™M

7,

Fig. 2.4-8 Tianslation shown as a combination of elements
of inertia and spring

For small displacements where the principle of linearity is valid,

Equation (2.4-1) becomes

d
F, - F, = MdT‘” . (2.4-22)
ie.
dw _ -
MaT +cz=F (24 23)

The model of motion now comprises Equations (2.4-3) and (2.4-23). with
whose help it is easy to show that

2
iti +cz=F . (2.4-24)

It is not difficult to combine these two OLDE of the f{irst order into

matrix state-space form

2] [0 17 [z 0
= L [F] , (2.4-25)
0 w M

Zla

w -

:

The eigenvalues of matrix B are now a complex conjugate pair

M = *‘/cv i (2.4-26)
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which shows that the transient process will be periodic. The real part
equals zero (which is a direct consequence of the assumption that there
are no resistance friction forces), so this is the alteady known case of
undamped oscillatory motion. Equation (2.4-24) is a DE of a second-order
(proportional) system (periodic system) in which the damping part equals
zerc. The fact that the process is oscillatory indicates that there must be a
possibility for change in energy form in this combination. Intuitively, this is
clear. The kinetic energy contained in the motion of mass M by velocity w
changes into the potential energy stored in the spring by its compression
and stretching, i.e. by changes in displacement variable z. However, the
dynamic coefficient, inertance I. must also be found. This inertance is part
of the oscillatory process because, as we already showed in Section 2.2,
such processes are possible only if there is a link between elements of
capacitance and inertance. The path leading to that inertance 1 will,
nevertheless, not be intuitive since it is more suitable to use mathematical
expressions and definitions from which it follows directly

._E _ Edt _wdt_dz _ 1 )
[ = oF © dF " dF daF T @ - (2.4-2T)
dt
1
Flt) - oF 1 Im=Mw 1 w 1 z
~ s c s

Fig. 2.4-6 Block diagram of translational motion of a body if
tesistance depends linearly on displacement

We have, thus, used the definition by which I equals the 1atio of effort
to gradient of flow, and a little calculation gave us that coefficient. The
dynamic process of change in position z due to force F is given in the
block diagram as shown in Figure 2.4-6. Coefficients C and | are given by
(2.4-12) and (2.4-27) .
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The preceding example has brought us closer to considering as one
whole the dynamics of mechanical and other processes. Examples have
been presenied in the form of stale-space equations and block diagrams,
coefficients of capacity, resistance and inertia have been given, and in
this way we deviated from the usual analytical tools of classical
mechanics.

The following example will show the earlier mentioned duality which
appears in mechanics as a result of the selection of dynamic variables
and coefficients. A similar duality also exists in electrical circuits.

Example 2 Duality of dynamic variables and coefficients in
mechanics

Figure 2.4-T shows two mass-spring-damper systems. Derive DE
describing their dynamics, determine their dynamic variables and dynamic
coefficients, and draw their block diagrams. The dry friction resistance is
neglected, ie. F> = 0.

The systems shown in Figure 24-T are similar in dynamic
characteristics. The essential difference is that in Figure a) the
displacements z, i.e. velocities w = 2' are equal, which does not hold for
Figure b). On that Figure the velocities are different but the forces are
equal.

z
(e}
ANsswannngnnng
m
>
=z -
N

Zm=Zy= Iy zmﬁ’zo#zd
Zm = 2o = 2Y

a) b)
Fig. 2.4-T Mechanical systems with:

a) equal velocities
b) equal forces
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Applying Newton's law for the conservation of momentum to the system
on Figure 2.4-Ta (where z;, = 20 = z4 = 2) yields

2
F -cz-D3Z . u32 (2.4-28)
F, Fy F3
ie.

d%z dz
Ma—té—— + D—a + C2 = F . (24'29)

In the system on Figure 2.4-Tb the velocities, i.e. the displacements, are
no longer equal. Hete the foices are equal. If we derive d'Alembert's
equations for the equilibrium of forces for point A and for mass M., we get
the following two equations

clzp - 29) = D(z2'qg - 2') . (2.4-30)
D(z'g - 2'm)= Mz, . (2.4-31)

Rearrangement yields

—Mgw}}, + %w‘m + Wm o= Wo . (2.4-32)

The case on fligure 2.4-Ta, described by (2.4-29), has alteady been
analyzed in the preceding example and mathematically described by
(2.4-24), only here the resistance force Dw, represented by a damper, is
also included. The dynamic variables and coefficients defined eatlier also
satisfy in this case. Now they must be determined for the system on Figure
2.4-Tb.

It has already been mentioned that force F is a common and equal
variable for all the three elements, and here it is the variable of effort.
The variable of flow, also an input variable, is now velocity w. This is the
change from the preceding example, where the dynamic variables were
the opposite - the variable of effort was velocity w and of flow force F.
The stored vairiable is the variable of spring stretching and compression
32 = 25 - 24.

The dynamic coefficients (capacitance, resistance and inertance) are
obtained directly from their definitions
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AV z 1
C = —E—— = —PT = —g K (2.4'33)
R = E—- = i = D . (2.4'34)
F w
E F F
[ = &F T dw - o M . (2.4-35)
dt dt

The Table 2.4-2 shows the dynamic variables and coefficients, i.e. their
possible duality in mechanics (the case of r1otational motion is also
presented).

Table 2.4-2
Translation Rotation
AV Im = Mw z L; = Ju @
F F w MZ W
E w p W Mz
C M 1 I 1
C Ct
)] 1
R 5 D D Dy
, 1L v || L |
C Ct

Figure 2.4-8 1epresents a block diagram for the descriptions given by
Equations (2.4-29) and (2.4-32).

The example in which force F is the flow variable is more natural and
easier to understand, and this is the case for which we will derive
state-space equations and analyze eigenvalues. If slate variables and
inputs are selected as follows

X = 2

X = w =2

u = F ,

two first-order OLDE are obtained

X'=2"'=w=x;
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X' = 2 =-—c—z—-—D—z'+—l—F=-—c—x-2x +LF'
2 = M M M MMM

which it is easy to set down .in the form of matrix state-space

equations
b4 0 I p 0
= + F . (2.4-36)
M M M

R 1
I
F=R J\ S5F 1 Im=Mw 1 w 1 z
T s c s
) 1 a)
R
L
1
52 % F b] I,,,=Mw,,,
c s
2 b)
R

Fig. 2.4-8 Block diagrams of the mechanical system
mass-spring-damper

It is not difficult to establish that (2.4-T), (2.4-14) and (2.4-25) are only
special cases of the upper equations. The eigenvalues are obtained by

solving Equation (A I - A) = O so that

D *ZMVD - 4cM (2.4-3T)

A2 =

An analysis of the last expression points to thiee possible sets of

values for the eigenvalues i:
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a) D2 <« 4 cM, 2 is a pair of complex conjugate values with a
negative real part; the response is of damped periodic character,

b) D? = 4 cM, A\, = X, is a pair of equal negative 1eal r1oots, the
response is unperiodic,

c) D2 » 4 cM; A # Ao the roots are real, negative and different, the
1esponse is unperiodic and strongly damped.

The f{ollowing standard coefficients for periodic processes ate very
often used in practice.

The natural frequency of undamped (D = 0) oscillation

on = 1/% - 1/T_Tg (2.4-38)

The damping ratio £

actual damping coefficient D
£ = - — = (2.4-39)
critical damping coeificient 2-/cM

Substituting these variables into (2.4-27) for eigenvalues
M2 = -Eup t wpyE® -1 = 0t (2.4-40)

The analysis that was carried out for Equation (2.2-3.27) is valid here
also, except that in this case undamped oscillations (D = 0), and (2.4-13)
makes resistance R infinite. In the mentioned analysis we must, therefore,
take the coefficient of viscous friction D instead of R in such cases.

Example 3 Dynamic models of different mechanical systems

Figure 2.4-9 shows three simple mechanical systems with given input
and output variables. Derive a dynamic model for those systems and
determine the eigenvalues of system matrix K. The basic assumptions for
the individual systems are:

a) the cylinder rolls without sliding,
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b) the driving torque is transferred, without sliding, from drum 1 1o drum
2, which lifts a load by winding a stiff, unstietchable 1ope,

¢) the mass and moment of inertia of the lever are neglected.

P—=Z=y —‘Z|=U

3 a)

F PN

b}

c)

Fig. 2.4-9 Three simple mechanical systems

a) The equation describing relations between displacement z of the
cylinder and displacement 2z, of the end of the spring arte obtained by
deriving the equations of equilibrium for horizontal forces and torques
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around the centre of the cylinder (d'Alembert's principle) with the help of
Figure 2.4-10,

F°=C(21"z)

Fig. 2.4-10 The foices acting on the cylinder
The equilibrium of forces yields
Mz" = Fo - F = c(zy -2) - F , (2.4-41)
and the equilibrium of torques around the cylinder centre yields
Jo" = Fr . (2.4-42)
Since there is no sliding z = 1y, so (2.4-42) becomes
Jz" = Fi? | (2.4-43)

For the cylinder | = Mr?/2, so if F is expressed from the last equation,
(2.4-41) becomes

2 c 2c
r A ?ﬁz = ?ﬁz, (24"44)

With the state variables x; = 2 and x; = w, it follows that

z 0 1 z 0

2 + 2c [z:] - (2.4-45)°

W 3AM 0 JLw M
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The eigenvalues of matrix & are a complex conjugale pair
X1.2 = t m . ] (24'40)

which shows that this is a typical periodic undamped piocess of a
second-order (proportional) system.

b) Figure 2.4-l11 shows all the possible [orces and torques on each of
the parts of the load-lifting system.

lz,z‘,z“
-4

Fig. 2.4-11 Forces and torques on a load-lifting system

The equations for torque equilibrium around the centres of 1otation A
and B and for the equalities of the vertical forces acting on mass M are

Jie = Mz - Fry (2.4-47)
Jowz" = F1z - Stz . (2.4-48)
Mz" = S - Mg (2.4-49)

Point C of drum 2, assuming the rope is stiff and unsiretchable, moves
at the same velocily as the raising load w = 2, and since there is no
sliding, the velocities of points E and D will be equal. The following
relations are thus fulfilled
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1
N

Iowp = Tpwp = 2" Ippp" = 2
(2.4-50)

Towz = Ty Tawp = Iywg Iop" = Iypy"

Using the above equalities and eliminating the expressions for F and S
fiom the preceding thriee equations, gives the final model for the load's
height change in the form of the following second-order OLDE

M+ I]% * 1—§)r:2“ = Mz - Mgr, . (2.4-51)

a4

or the state-space equation

21T [0 17(= o) 0 M,
= . (2.4-82)
W 0 0Ollw l— LI M
a4 ay
A b21 b??

The eigenvalues of matrix A are equal
k‘ = Xz = O . (2.4‘53)
Thus we have a series of two "pure” integral systems with no time lag.

These interrelations are clarified in the block diagram presentation in
Figure 2.4-12.

M,

Fig. 2.4-12 Block diagram of load-lifting system

Figure 2.4-12 shows quile clearly thal a load of mass M will 1est only if
Mzb2| + Mb22 = O

ie. for
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Mz = Mg, (2.4-54)

In all other cases the load raises or descends continucusly to
(theorstic) infinity, which is a typical and generally known property of
integral systems.

c¢) The forces caused by motion of this mechanical system arise in the
damper and in the spring. According to (2.4-17), the force in the damper is
proportional to the velocily difference between the piston and the
cylinder

Fp = D(z' - L¢") (2.4-58)

The f{orce in the spring is proportional ifo ils compression

Fo = cLyp . (2.4-56)

The equality of those two forces gives

D(z' - L") = cLy¢ . (2.4-57)
i.e.

D L] D L]

—(':—-‘p + p = -ZLZ (24 58)

If we use the .first column of Table 2.4-2 and introduce dynamic
coefficients of inertia and resistance (2.4-58), becomes

T e TR (2.4-89)
ie.
de = Loy ]
.CF- +p = LTZ . (2.4-60)

The time constant T = I/R has alieady been obtained (see (2.2-124) ),
and the right-hand side of Equation (2.4-60) shows that the relationship
between the displacement of cylinder piston z and angle of displacement
¢ is given by a derivative system with first-order lag. In the dynamic
sense this relationship is completely analogous to that existing between
outflow m, and pressure P, or the cioss-sectional area of valve A, given
by Equation (2.2-2.30) in the case of the gas storage tank. There is also a
dynamic analogy with the process of heat conduction, with the
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1elationship between heat flow rate g, and temperature of heated fluid 9s.
which is shown with an approximated transfer function (3.2-581), i.e. (3.2-61).

Eigenvalue 2y = - [/T. but the dynamics of this process is also
characterized by the zero value of the transfer function nominator, which
is now in the origin, n, = O.

We must also say that dynamic processes in mechanical systems will
always be of a derivative character when the input variable is the
displacement of the damper piston.

The next and last example in this section shows a case that in fact
belongs to the following part of this chapter about processes with lumped
parameters, the part in which composed piocesses of higher order will be
shown. This example can serve as a kind of transition to the description
of such processes., which can be bioken down into several basic ones
and whose model is (at least) of second or higher order. Besides, we also
want to show an example here of a process that is originally nonlinear
and has two states of equilibrium. One of those equilibrium points of
operation is unstable, and the other marginally stable in this idealized
frictionless case, but stable in practice. We also wish 1o show that the
same models for the motion of composed mechanical systems can be
obtained if we use Lagrange's equations of motion or Newlon's laws.
Although the example will be rather idealized and seemingly only of
theorstic importance, we must say that these are cases that appear as
problems of control in modern technical practice.

Example 4 Dynamics of a composed mechanical system. Stability of
moving pendulum equilibrium state

Figure 2.4-13 shows an idealized pendulum whose mass is concentrated
at its end, attached to a cart that can move in the vertical z-y plane
under the influence of driving foirce F in the direction of the horizontal 2z
axis. Two basic positions are shown in which the pendulum must be
maintained by changes in force F. (The first, upright position represents
the simplest cne-dimensional model that is used for controlling rockets
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during takeoff, when they must be maintained in an upright position. The
second is the case of a suspended pendulum, today often used as a
model for planning control procedures when loads are transported by
crane and the task of their optimum conticl can be 1egarded either as a
question of the smallest possible swinging of the load, or as conuiolling
load transport in minimum time.) Losses due to friction in the joints and
the body's resistance to motion ate neglected.

Derive the nonlinear model of motion dynamics for the moving
pendulum, linearize it, formulate state-space equations, determine
eigenvalues of the system matrix & and on their basis conclude about the
characteristics of the transient process and the stability of the equilibrium
point. Derive the models:

a - using Newton's laws (upright pendulum)
b - formulating Lagrange’s equations of motion (suspended pendulum)

Fig. 2.4-13 Moving pendulum

a) Figure 2.4-14 shows the geometrical relations which will be used to
derive the laws of motion. We must immediately observe that if the cart
moves along the path 2, the displacement of the pendulum in the
direction of the z axis equals z + L sin ¢ .
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Lcosy

Fig. 2.4-14 Geometrical relations in an upright moving pendulum

laws of motion f{or translation in the

The application of Newton's
direction of the z axis yields

d?z d? .
M'F + MZW (Z + LSII‘IKP) = F . (24'61)

For rotation of the pendulum about point A the law for the conservation

of momentum is

d? qd?
[Mz—T(z + Lsin.p):[Lcos.p - [Mz-—z—(LCOStp)]Lsintp = M,gLsine
4 o (2.4-62)

Before differentialing the above expressions we must mention that the
pendulum's angular displacement is a time function (a dynamic variable),

which means

g—tsimp = COospry’
d? . .
g Sine = -sing-¢'2 + cose ¢" (2.4-63)

d s '
qr-Cose = -sing-e

2
dt?

-cos¢-p'? - sing- "

COSy
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Referzing to the above expressions and differentiating the egquations
yields

(M, + Mp)z" - MoL(sing)p? + M,L(cose)p" = F (2.4-64)
M,2"cosep + MyLe" = M,gsine . (2.4-65)

These two equations are the nonlinear model for the motion
dynamics of an upright moving pendulum under the influence of force F.

The simplest way to linearize this model is 1o use the jact that for
small deviations from the upright, equilibrium position sing = ¢, cose = I,
and because of its small value, the product ¢ - ¢ can be made equal to
zerto. This gives us the following linear model for the motion of this
system, which is satisfactory for small angular displacements.

(My + Mp)z" + MyL¢" = F , (2.4-66)

MQZ“ + MgL‘p" = Mzgip (2.4'6?)

To obtain models in the form of matrix state-space equations the state
variables must be selected. As until now, in mechanical processes of
motion the most natural selection will also be made. Here stale variables

are the displacements and velocities of the carn and the pendulum. Thus
for

Xy = 2

X, =2 = w (2.4-68)
X3 = ¢

Xe = @' = w

the linear model obtained can be transformed into this final form

0 1 0 0] T Z] [ 0 7]
1
- 2 —
w 0 ’ g 0 w M,
¢l 10 O o] 1 el ¢ 0 [F] (2.4-69)
M+M, 1
B w_ L ¢ 0 ML O_J L wﬂ . ML
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X'=AX+BU

Solving equation (A - K) = 0O gives the following characteristic
equation for that model

20,2 . MpM, = -
22(n ML g)=0 , (2.4-70)

from which the following eigenvalues follow directly

)\, =0
)\2 =0
/MM
Ag = &'ng
(2.4-11)
= - M,+M2 = -
M ML 9 A

As unitil now in the case of translation, the eigenvalues Ay = % = O
belong to changes in the position z and velocity w of the cart. The
eigenvalue 1; is positive, and shows that the equilibrium position
of the upright pendulum is unstable in the sense that if one
variable (in this case the angular displacement of pendulum ¢) is
disturtbed for even the smallest amount it will irreversibly depart further
and further away from' the equilibrium position ¢ = 0. A, is a real and
negative variable and related to changes in angular velocity.

b) The Lagrange equations of motion are given as follows

_g_l_(_:’;{_-;) . 3%1':_ . AE% 0. (=12 . K (2.4-12)
.. Lagrangian, L = T - V

.. kinetic energy

.. potential energy

. Rayleigh's dissipation function

.. external (generalized) force in the direction of the i-th coordinate
. generalized coordinate

.. degree of freedom of the mechanical system

a0 QU< Hr

Equation (2.4-72) shows a system of k (in the general case nonlinear)
differential equations of the second order.
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The moving suspended pendulum is an example of a mechanical
system with two degrees of {reedom. The generalized coordinates of that
motion are variable z for the.translation and the angular displacement ¢
for the rotlation of the pendulum.

The kinetic energy of the system is

1
T = —2_M|W|2 +

1

FMaws? (2.4-13)

The velocily of the cart w; = 2z, and w, is the absolute velocity of mass
M, which is obviously composed of velocily componenis in the direction
of the 2z axis and the y axis. Therefore, Figure 2.4-14 and Equation (2.4-63)
yield

wo? = (z + Lsing)'? + (Lcose)'? = 2'2 + L%'2 + 22'Lcose ¢ (2.4-74)

Substituting this expression for velocity into (2.4-73) yields

T = 17M.wl2 + %Mg(z'2 + L% + 2z'Lcose- o) (2.4-15)

The potential energy of the system is
V = MugL(l - cosy) . (2.4-76)

It is clear that in the equilibrium state V = 0, which results from the
upper equation for ¢ = O.

The Lagrangian is now not difficult to calculate

L=T-V =—:IZaM.w,"’ + —;—Mz(z"" +L%'2 + 2z'Lcose ¢") - MogL(l - cosg)
(2.4-77)
The equations of motion along the generalized coordinates follow

ditectly from (2.4-72)

d L oL
dt az 3z
d oL oL

a (__a_q),_) “5e "0 (2.4-18)



SEC. 24 137

Substituting Equation (2.4-T7) for L into this system of equations and
carnrying out the necessary operations gives the demanded description of
the motion dynamics of a moving suspended pendulum

(M| + Mg)zn - MgL(Sinlp)lp‘z + MaL(COS‘p)tp" = F (24‘79)
M,z"cosp + M,Le¢" = - M,gsing . (2.4-80)

Again this is a model composed of iwo nonlinear second-order ODE,
which difflers from the model of the upright pendulum in the sign of the
right-hand side of the second equation. However, this “small" difference

leads to essentially different results in the way in which this system
moves,

Linearization and the selectlion of state variables is carried out in the
same way as in the preceding case, which gives the following linear
model for a moving suspended pendulum in the form of matrix state-space
equations

2] [Oo I 0 0] [ 2] [ 0 ]
M, 1
w Q M, 0 w M,
e]*J0 o o 1 el | o | [F] (2.4-81)
MM, -

| w_ ] 0 0 ML g Oﬁ ] w_ | ML
The characteristic equation of matrix R is now
A% - ay)=0 ., - (2.4-82)

from which follow the eigenvalues for a moving suspended pendulum

AN =0
XZ = O
MM
)‘3 = h‘d"ng }
(2.4-83)
Ay = - MM,
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The eigenvalues A, and A, belong to translational motion of the cart
and have not changed, which was to be expected since there was no
changs in that moticon.

However, the change in the second pair of eigenvalues is essential. 2,
and ), are a complex -conjugate pair ‘on the imaginary axis (their 1eal
part equals zero), which means they characterize an undamped periodical
transient process similar to processes that have alieady been encountered.

The frequency w of the oscillation (swinging} is

- MﬁMg _
w = -I/ ML g . (2.4-84)

These eigenvalues, neither of which is in the right-hand semiplane of
the complex plane of characteristic Equation (2.4-82) solutions, show that
the position of equilibrium for the suspended pendulum (¢ = Q) is no
longer unstable. All the same, since all possible resistances have been
neglected, we must say that this position is not asymptotically stable in
the sense that after a disturbance the angular displacement of the
pendulum will gradually return to its initial value ¢ =.0. With this choice
of assumptions, after disturbance the pendulum will swing with frequency
w around the initial position of equilibrium without damping.
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B. COMPLEX SYSTEMS OF HIGHER ORDER

2.8 EXAMPLES OF COMPLEX SYSTEMS

In all the preceding sections of this chapter on processes with lumped
parameters (with the exception of the last example in Section 2.4, which
represents a transition to descriptions of higher-order processes) we met
with processes whose dynamics was described by DE of no more than
second order. Such processes have been named basic, which allows us to
conclude that they could be parts of everi the most complex systems, i.e.
that complex systems can be reduced to various combinations of those
basic processes. This is very frequently done in practice where models of
extremely complicated technological systems are encountersd. For certain
purposes of analysis or synthesis of control algorithms such systems are
desciibed by models of fourth, third, as well as second or first order.
Depending on the demands and goals that must be satisfied, opposite
situations also exist when a seemingly simple object is described by a
dynamic model of high order. The concepts of simple and complex are
obviously relative and we must distinguish, especially fiom the aspect of
simplicity, the process from its model. All combinations are possible:
complex process - simple model. simple process - complex model, and so
on. This section will. therefore, analyze cases when the model is of
second or of more than second order, and the procedure for obtaining
models and the usual analysis will be shown on several simple cases.

Complex processes described by higher-order models are metl in
various situations. In modeling the dynamics of a large plant it is usual to
break its structure down into elementary devices: pumps, reactors, pipes,
valves and the like, and then model each of those parts separately.
Interconnecting all the basic models gives a high-order model {or the
whole plant. Another case when a high-order model is obtained is for
processes that occur in objects of simple geometrical structure within
which simultaneous mass. energy and momentum changes take place.
Deriving all the demanded equations leads to a higher-order model.
Finally, in technical practice the dynamics of processes with distributed
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parameters is usually investigated using spatial discretization. This means
that a continuous process is divided into elements of finite dimension and
then balance (conservation) equations are derived for each of those
elements. There is alsc another way: first PDE are formulated describing
the dynamics of the distributed process and then mathematical
discretization is performed with respect to the spatial variables. Both
procedures lead to the same result in the sense that instead of one or
several PDE a system of ODE is obtained. which can then be elaborated
further analytically or by numerical processing on a computer.

Thanks to calculating aids - computers, today models of very high
order are derived and processed. However, for understanding the basic
properties of a model it is irrelevant whether it is of 5th, 55th, 105th or
1005th order. With very high orders new problems connected with
compuler processing are encountered. but these are not the concern of
this book. Therefore, the following examples will remain simple so as to be
clear and easy to understand. They certainly include the example of the
moving pendulum from the preceding section.

Example 1 Three liquid tanks in series

Derive a mathematical model of dynamics for three liquid tanks in
series, Figure 2.5-1, and after linearization determine system matrix X input
matrix B and find the eigenvalues. Neglect liquid inertia in tanks and
pipes. The following data are given:

Ay=1m?® d,=0045m L;=40m =004 my =3 kTg

2 kg

A, =085 m° d,=005m L,=1m A = 0.04 m(2=25—

2 kg

Ay =lm d; = 006 m L; =20 m xy = 0.04 mi3=2—£—
The pressure drop on the valve is 8P, = 1 bar and the mean

cross-sectional area of the valve is a, = 0.00]1 m?2.

The dynamic model is' obtained in the usual way by deriving
equations for the conservation of mass for each of the tanks. Besides
those equations, however, it is also necessary to derive algebraic
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expressions for liquid flow through the system using Bernoulli's equations.

H,

AHI AHz aH; AH] AH3
Sy Gy Ry H C, R, C, Ry

amg, \ amgy amg3

amy, ’ amg, N“ozt
AmMjy KA ami3
[ee
Fig. 2.5-1 Three liquid tanks in series and a block diagram
of the interrelations
dH
mj - Mgy = Alo—c—h—| . (2.5-)
Miz + Moy - Moz = AzOdH2 . (2.5-2)
dt
Mz + Mgz - Me3 = Aao% (2.5-3)
1

- = 1 m? _
eg(H, - Hz) = 8P, Mg 7aze Mot (2.5-4)
egiH, - H3) = 3P, (2.5-5)

2 2
=5 . Mos Ly 1 o .

PgH3 2 e + 8PC3 zagp + A3 d3 zagpmog . (25 6)

The steady slate for the given mass flow rate values and the tank
system must first be determined, and then linearization about that
operating point performed. Equalizing the right-hand sides of the first
three equations with zero yields
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— — k
mi|=mo:=3_g‘

s
— — —_ kg
moz=mn+m|z=5——s .
- —_ —_ — k
moa=mn*ﬂ'llz*mi3=75i
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The following liquid levels will be established in the tanks

A .(;‘_L‘}___?__l +__,‘lz_)_ﬁ_g_3_.457m
3 ¥dy 2adp 2aje” og ' '

Py L H, =147 m
g

= A .h_ _2_1 -n-lg'
‘dl 2ajo eg

o}
Y
L]

H,

+ H, =212l m

Linearizing the model as shown in Sections 2l-1 and 2.2-1 gives the

following linear model

Amy - Amgy = C, daH,

dt
Amj, + Amg, - Amg, = C, dcl;tHz
Amjz + AMg, - Amgs = Cg dgtl-h
AH, - AH; = Rjamg,
AH, - AH; = RpAmgs - R,Kalay,
AHz = Ryamgs

The resistance and

expressions
Rl = E@_“Bz_). = 4.3 C| = A|p = 1000
Moy
R, = ZHzH) 408 ¢, - 500
Moz
R3 = 2H3 = 1.3 C3 = IOOO
Mo3
Ka = =92 = 5000

Y

capacitance are oblained from

(2.5-7)

(2.5-8)

(2.5-9)

(2.5-10)

(25-)

(2.5-12)

the known

T, = 4300
Tz = 2040
Ts = 1300
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If the internal variables mg, my, and my; are excluded from the last
system of equations, a little rearrangement yields this state-space
descripticn

[ B [ 1 i A r H .
AH, "",f" Tz Qo AH,
gz '('%’D 1
- i 1 2
AH2 T2 Tz Tz AH2 +
-:L -( };3 +1) ‘
AH, 0 T: : Ti AH,
- §
FI— o o o | [ amin ]
¢
Am;
.o -é— 0 % : (2.5-13)
2 1 K2 Amys
0 0 = =&
i C: G | | bay |

After substituting into matrix K the values of the coefficients, a
computer can be used to obtain the numerical values of the eigenvalues
for this case

X, = -0.000086, X, = -0.000736, A; = - 0.001378

Three negative, real eigenvalues show that this is a stable equilibrium
state of three first-order proportional systems in series, where there is
feedback action of each successive member on the preceding one. This
can be seen on the block diagram on Figure 2.5-1.

Example 2 Two-phase fluid tank

Figure 2.5-2 shows a two-phase fluid tank with completely separated
phases. It is fed by m;; kg/s saturated water and m;, water and steam
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mixture with steam quality x and enthalpy h, mg, kg/s dry saturated
steam and mg, kg/s saturated water are taken from the tank. Devices that
are not shown on Figure 2.5-2 completely separate the mixture m;, into the
liquid and the vapor phase. Derive the model for unsteady changes of
pressure P and the liquid phase level H, i.e. the water volume V,,. All the
thermodynamic state equations for saturation variables are known, i.e.
there are analytic expressions of the type h' = h'(P), ¢' = o' (P). v" = v"(P)
and so on. The basic assumption, besides the mentioned phase separation,
is that there is no mass transfer on the contact suiface due to pressure
change, and that both phases are homogeneous, i.e. thete are no waler
drops in the sieam, nor can steam bubbles form in the walter.

The model will be derived by the same method that was used in
Example 1, Section 2.1-2, when a dynamic model was oblained lor a gas
storage tank. In that case, however, because isothermal processes in the
tank were assumed, no energy equation was formulated. Since temperature
dynamics was neglected in Equation (21-2.4) the model for pressure
dynamics was of first order and obtained only from the law for the
conservation of mass and the gas equation. Here the situation is somewhat
more complex.

The total mass M of the fluid and its internal energy U, ie. the heat
within the tank of constant volume V., are completely determined by two
variables: pressure P and the volume of liquid phase V., M = g{ PVu). U
= go(P.Vy). In conditions of mass and energy flow equilibrium these are
constant values. If the flows become unbalanced unsteady phenomena
occur and to describe them equations for the conservation of
mass and energy must be formulated. For the tank under consideration
here they are

dM
Mj; + Mjz - Mgy =~ Moy = ar (2.5-14)
d
mjzhp - (mgz - mh' - meh" = d—?- (2.5-15)

The iotal mass and energy in the tank comprises the mass and ensrgy
of the liquid and the vapor phase

M= Vyo' + (V - V)" (2.5-16)

U= Vye'u' « (V- Vy)e"u" . (2.8-17)
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m,'zhzx

Fig. 2.8-2 Two-phase fluid tank

Substituting the known equality

ou = ph - P , (2.5-18)
into the preceding expression, we gset

U= Vye'h' + (V- V)p"h" - VP | (2.5-19)

Here we must point out that in literature, internal energy is often
substituted by enthalpy, which would (had it been dons in this derivation)
lead to the disappearance of the last term on the right-hand side of
Equation (2.5-19). This substilution leads to the appearance of a "dynamic"
error in the "dynamic" term of Equation (2.5-15) (the term on its right-hand
side) thus influencing the transient process but not the steady state as
well.

For the needs of further derivation we must remember that the stiate
variables on the boundary curves are functions of pressure only, and for
all of them we can write

d o dP

G- 3P ar (2.5-20)
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Substituting (2.5-16) and (2.5-19) into the first two equations of this
example, referring to (2.5-20). after a little 1earrangement we get! the model
for the dynamics of pressure and volume of the liquid phase in the form
of the following two nonlinear DE

_CE’= (mi#miz-Mo-Mo)(p'h'-o"h") _ (mizhp-(moz-mjp)h'-meh ") e'-0")

dt N N
(2.5-21)
dp' 0", dP
av (mj iz Moy Mo2) - (—a%vw + T‘;(V'Vw))ﬁ
== 0 " (25'22)
dt ' - P
N =N -N, (25-23)
130 L) a ) a “
Ny = (e'h' - o"h") (SEVu + S5(V-V,)) . (2.5-24)

R L] a » a L1 LU}
Nz =(o0 ) 8 Varh' + S5 Va6 + S0 (V- V) b SV V ) V] (25:26)

Equations (2.5-21) and (2.5-22) are the demanded nonlinear mathematical
model of dynamic processes occurring in the two-phase fluid tank. As the
given expressions show, to solve them it is necessary to have all the
functional dependencies of thermodynamic saturation variables and their
derivalives with reference to pressure P. By their nature these are clumsy
expressions, and even in the case of their simplest linear approximation
the above system of DE is practically insolvable without a digital
computer.

But in this case the steady state can also be calculated analytically.
After the right-hand sides of (2.5-14) and (2.5-15) are made equal to zero,
these obvious equalities result

I-Eil + 512 = qu + Eoz . (2.5-26)
miph, = (M2 - MR + mgh" . (2.5-21)

The last expressions are completely clear and repiesent the
equilibrium of mass and energy flows in the given steady state. Here it is
important to point out that a new steady state will establish itself only in
the case of limited change in h,. In the case of a finilte change in any
other input (distutbance) variable (mj, mj,. Mgy, my,) no steady state can
be established and the tank shows pioperties of an integral sysiem. In
such cases mass and energy equilibrium are permanenily disturbed and
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the variable Vy converges to theoretically infinite change, which would in
practice lead to the complete disappearance of the liquid or the vapor
phase in the tank,

The same conclusion is 1eached after the model is linerized. The
functional dependence of variables V,, and P given in the model can also
be expressed as follows

\
—d'd—tﬂ = f‘ (Vw. P, My, My, Mgy, Mga, ha) (25'28)
dP
at = f, (Vw, P. mj;, mjz, Moy, Moz hp) (2.5-29)
state input
variables

Linearization is carried out in the usual manner by differentiating the
above equations (see Appendix), but here we will not write out the
complete analytical expressions for each specific coefficient because of
their awkwardness. It is, nevertheless, useful to show what matrices A and
B are built of in this case of a two-phase {luid tank.

ari af,
avy, ) oV 3P AV, .
of, of,
ap oVw P o AP
A
Am;
af,  afy  of, o, of |
Am|2
oM jy am|p oMy eMge ohy
I I A A A A Aoy
:mz ini ?mzl aa,; = Aoy (2.5-30)
it {2 ot o2 2 o Ah2
B

The partial derivatives shown in Equation (2.5-30) are the differentiation
of the right-hand side of Equation (2.5-22) for the first row of matrices K
and B, and of the right-hand side of Equation (2.5-21) for the second row
of these matrices, with respect to the variables of state and input.

The line above the functions and the subscript O show that the partial
derivatives must be calculated in a specific operational (steady) state. [t
must also be said that the first column of matrix A is composed of zetos,
i.e. the coefficients a,; and a,, are equal to zero, which shows that one of
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the matrix eigenvalues will be zero and to it will corespond an infinitely
great lime constant. [n other words, the variable to which that eigenvalue
is related needs an infinitely long time to reach a new sieady staie. Or o
put it even more clearly - that variable cannot reach a new steady valuse
in a finite period of time. That variable, as has already been said, is the
volume of the liquid phase V,,. The second eigenvalue equals the
coefficient a,, and in practice this is a negative 1real value characteristic
of aperiodic proportional first- order systems. The process of pressure P
changes in the tank will show these dynamic characteristics.

Finally. it must be repeated that since both mass and energy are
stored in the tank. this is a second-order model for changes in the volume
of liquid phase V,, (or in the liquid level H. because those two variables
are uniquely linked by algebraic expressions) and pressure P in the tank.
In this case, Vy shows properties of an integral and P of a proportional
system.

Example 3 Gear train system

L2
e

5

I

Y YK
YN K
s
&

Fig. 2.5-3 Gear train system

Derive a model for dynamic changes of angular displacements and
angular velocities for the gear train system shown on Figure 2.5-3. if the
interrelations are linear. All the geometric variables and the coefficients ¢
and D; (torsional spring constant and torsional coefficient of viscous
friction) are given. Loss due to the friction of shaft 1 and the stiffness of
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shaft 2 are neglected. The input disturbance variables are driving torque
Mz, and load torque M. The model is 1o be shown in the form of
slate-space equations.

To derive the dynamic model of this mechanical system we must

formulate equations for momentum conservation for the rotation of shafts 1
and 2.

For shaft |

Jief = - crer - Mz + Mzp (2.5-31)
where M., is the torque transmitted to shaft 2, for which

Jawz = - Droz - Mzt + Mzz . (2.5-32)
M., is transmilted to shaft 2 through gears.

There is also

hey = Iz . (2.5-33)
Mz 9y = Mz, 92 . (2.5-34)

The last equation expresses the equality of the work done by gear |
and gear 2. The above equations yield

Mz, P2 §
ol AR SN 2.58-35
Mzp P I ( )

Referring to (2.5-35), we see that (2.5-32) becomes
" 1) r2
Jao? + Dypz + Mgy = Mg, = Mz'_r_,—— (2.5-36)

If My is expressed from {2.5-31) and substituted into the above
expression, after substituting ¢, = (1,/13) ¢, the DE describing the
dynamics of the gear train system is obtained

2 2
Ui + (—r’i) I)el Dt(‘:‘;‘) o+ CLer = Myp - ’—;Mzt . (2.5-37)

1
J
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The last egquation, with the equivalent substitulion of ¢, by ¢, gives a
madel for the dynamics of the gear train system expressed by the angular
displacement of the shaft ¢,

2 2 2
Ui+ (39 Tded + DU eh + cipo = 2 Map - (B My . (25-38)
Ip Iz Ip Iz

It should be observed that the dynamic model of this gear train system
is of the second order, but is expressed in two ways - through the
angular displacement of shaft | and throcugh the angular displacement of
shaft 2. The model is thus either Equation (2.5-37) or Equation (2.5-38),
and it would be wrong to consider that both equatlions at once repiresent
the model demanded. In that case this would be a fourth-order system,
which it is not. We can chose either the pair ¢, and ', of the pair ¢, and
¢'; for the state variable. If we consider that the displacement angles ¢,
and ¢, and the angular velocities ¢'| and ¢', are oulput variables, the
following two notations in the form of state-space equations are possible.

Xy = 9y, X2 5 @1 = o

State equation:

1 0 l Py O O sz
= 2 -
- . _DK%E l %i (2.5-39)
L N —— — . M
Wy I I W) 1 I 2t

Output equation:

Pt 1 0
w 0 1 ¢
SRR [u] (2.5-40)
P2 1'—2 " .
Iy
Wy o —
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State equation:

P2 o} l ¢ O O sz
- DAY ] B Iy (2.5-41)
0 L-T Wt ¢ S | P Iz T2 M.y

P % 0]
Wy O‘ Jz2 P2
= I [ ] (2.5-42)
P2 1 0 w2
w2 0 1

Both these selections of state variables are accurate and this example
is useful to show how the selections can often be made in several ways.
There is more on this subject in the Appendix, and here we must
emphasize that in this case matrix A has remained unchanged. which is
not always so. However, the basic pioperties of the process shown by the
eigenvalues are always preserved. Here, in matrix & of Equations (2.5-39)
and (2.5-41), they have obviously remained the same.

The following example will show how a high-order model can be
obtained by the discretization of a spatially distributed process, whosse
model is of infinile order. This infinite order results from the fact that every
(even the simplest) distributed process is described by a partial DE
showing the change of a certain variable in every point in the space in
which that process occurs, and there is an unlimited number of such
peints. The order of the processes themselves, for the simplest PDE, is no
problem when an analytic solution can be obtained. An example of how
such a solution is obtained in a closed form is given in the following
chapter, but it must be said that such cases are rare. Usually this is not
the way to obtain a solution and the use of computers is unavoidable.
The first step is in most cases to reduce the model. i.e. to decrease its
order. Discretization with respect to the spaltial variable is the usual way
to transform one or several PDE into a finite system of ODE.
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In the following example a hyperbolic first-order PDE (3.1-28) from the
first section of the following chapter has been selected for discretization.
It describes the dynamics of conveclive heat transfer to a fluid flowing
through an uninsulated pipe. This is a linear PDE, which is suitable
because problems of discretization will not unnecessarily be complicated
by problems of linearization. These two procedures are completely
independent from the aspect of the order in which they are performed,
and when we need to formulate a nonlinear spatially distributed piocess
in the form of state space, this can be done seither by first performing
discretization and then the linearization of the system of ODE obtained, o1
by proceeding in the opposite order. After the PDE has been linearized, a
system of ODE is obtained through discretization, which is then easily
transformed into matrix state-space notation.

We must also say that discretization will be performed by the
method of backward difference which is only one of the many
ways in which it can be done.

Example 4 Discretization of distributed process

For purposes of numerical simulation a hyperbolic first-order PDE
(31-28) must be mathematically discretized. The equation describes the
dynamics of the condenser heat exchanger (8y # i{z). 8, = 8,{1)
developed and shown on Figure 31-5 in the form of a pipe. For
discretization into four elements, show the reduced model in the form of
state-space equations.

Also show how the same model can be obtained if the process is
physically divided first and the conservation equations formulated for
each of the thus obtained f{inite elements.

The discretization of the following hyperbolic PDE

a8 28 al
T‘)W'E;—fks—kaw.(k‘-Apc

) . (25-43)

will be camried out by the method of backward difference by
which the gradient of a specific function with 1espect to the space
variable z, in the section n. is substituted in the following manner
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of v _ fn - fnos

- 2.5-44
{ oz N 82 ( )
fn —— function value in the section n
fn-1 —— function value in the section n-1
5z —— distance between sections n-l and n (or, length of

element obtained through discretization)

Besides this method there are also many other methods (for example
the methods of forward and central difference) and manners which are
essentially no different. We will not enter into an analysis of the
advantages and disadvantages of such procedures nor will any other
methods be shown here.

Applying (2.5-44) to the given PDE, the following system of n first-order
ODE is obtained

don | . 8n - Sn,

= = + k8 = k8, . n =2, NE+1 . (2.5-45)

NE is the number of elements obtained by discretization (see Figure
2.5-4). The system of four ODE in the case of the division of the heat
exchanger into four elements follows

das,
dt
ds,
di
ds,
dt
dss
dt

+ k|32 = k23| + kaw

+ kgsg kg«ﬂ‘g + ksw

(2.5-46)

+ k,34 k233 + k\"}w

+ k,95 = k284 + ksw

(k|=”8wz—+k-k2=—8vzf—)

If variables w, k and 9, depended on spatial coordinate z, they would
also have subscript n in (2.5-48), ot a conresponding subscript in the
system of equations (2.5-46). This system is not difficult to show in the
form of matrix state-space equations if the only temperature of interest,
temperature 9, is selected as the output variable
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3 X 0 o ofls, ke k
33 kz ‘k] O 0 33 O k 31
= 2.5-47
'y 0 k, &, Ollsltlo k|| sw ( )
85 0 0 ko -ki] |95 0 k
X'=AX+BU
3,
84 8
[ss]=[0 0 0 1] +[o 0] (2.5-48)
B Sw
8

Y=CX+DVU

This shows how discretization transforms an infinite-dimensional process
whose dynamics is described by PDE into a mode! of finite dimensions.
Intuitively it is clear that a system of QODE will describe a process, the
more faithfully the higher the degree of discretization, i.e. the "thicker" the
division. But in that case the model obtained is of higher order and more
difficult 1o process, so it is up to the model builder to decide on its final
size.

‘b aw
i
[
3 L
(0.1 Lt)=
: % TS X L=,
-+ — {
1 2 3 4 5
lu,=aw 3, !ow l&w
U= 3 3 3, .=y
1 1 1 2 2 3 3 4 L S
NE=4 Xy Xz X3 X=Yy

Fig. 2.8-4 Discretization of a spatially distributed process and
1epresentation of state, input and output variables
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The path leading to the model (2.5-45) could have been different. It is
possible to divide the pipe into elements of finite volume fitst, and then
formulate energy conservation equations for each of those elements
separately, or for one typical element if all the subsystems are alike. This
will be done in the following lines for an element between cross-seclions
n-l and n and that derivation will be a suitlable illustration of what
discretization by the method of backward difference really represents, i.e.
where an error is consciously made in the application of that method.

Fig. 2.5-5 Finite pipe element of the condenser heat exchanger

Figure 2.5-5 shows the (n-I)st element, for which an equation for the
conservation of energy must be formulated. Above it is shown an
exponential fluid temperatute change along that element, given by
Equation (3.1-29) in the steady state.

The energy conservation equation for the element is

mcdy.y + alUsz2(8y - 94sr) - M, = Mcd—ziti . (2.5-49)

8¢sr denotes the mean fluid lemperature belween cross-sections n-1 and
n, and the error resulting from discretization occurs in the selection of this
temperature. [t is possible to make many different selections and wirite

Yisr = 8p-y ., O1

8n-y + 8n
2

str . 01
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Sgr = 8y ., oOF

$¢sr = ¥srlog -

The thicker the division, the smaller the temperature difference between
the cross-sections n-! and n., which 1educes the error introduced into
discretization. At the limit when division intc an infinite number of
elements has been made. we have

5sr = 8poy = 8 = 9srlog ,

and the error becomes equal to zero. A system of an infinite number of
first- order QODE (2.5-49) has been obtained, which is equivalent to PDE
(2.5-43).

If the number of elements is finite (I. 3, 9, 1T) and the temperature at
the output of the n-th cross-section chosen for the mean f{luid temperature,
ie.

dfer = 9n - (2.5-50)

the same system of ODE is obtained as the one derived by the method
of backward difference and shown in Equation (2.5-45). Substitution of
(2.5-80) into {2.5-49) for m = Awp and M = Apsz and shorter rearrangement
yields the equation describing the dynamics of temperature of the (n-l)st
element

ds,, 8n - %04

0 e Wt + k8q = ksy . (2.5-51)

Therefore, the method of backward difference represents a substitution
of mean f{luid temperature in a finite element obtained through
discretization, with the output fluid temperature of that element.

The mathematical discretization shown here can, as a rule, be applied
to all the PDE that appear in this book. If it is, for example, applied to the
system of three PDE (3.3-83) - (3.3-55), a system of 3- NE first-order ODE is
obtained which can then be processed (simulated) on a digital computer.
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Here we have completely left out an analysis of all the many problems
linked with methods of discretization themselves, about which many
specialized works, studies and books have been written. We must at least
mention that this primarily concerns the accuracy of the model (in the
sense of it approaching as closely as possible the real dynamics of the
undiscretized system of PDE) its stability and size, which is connected
with the costs of simulation and the difficullies of numerical processing.

This ends the description of dynamic models of processes with lumped
parameters, and the last example is a transition to the modeling of
processes in which some variables show spatial dependence as well. Most
of them cannot be completely described by one or more ODE, so from
now on partial DE will appear. This will be explained in more detail on
the following pages.



CHAPTER

THREE

DISTRIBUTED PROCESSES

In previous discussion we analyzed and described the dynamic
properties of processes in which the dependence of state variables on the
spaiial coordinate was neglected, i.e. in which we considered that any
change in state variable occurs simultaneously and equally in the whole
part of the plant under observation. Strictly speaking, in by far the
greatest number of cases that appear in engineering practice the
velocities, temperature, flows, concentrations, forces, pressures and so on
change differently both in time and in the separate parts of the plants.
The dynamics of certain variables thus depends on the spatial coordinate
and in these cases, when the time needed for disturbance propagation
(changes in state variables) through the plant comresponds io the time
constants characterizing other transient processes, that spatial distribution
must not be neglected. There are many examples of such systems in
which there is obvious spatial distribution and dependence of variables:
pipe heat exchangers, gas pipes and pipelines, transport conveyers and
so on, are examples in which stale variables depend on one spatial
coordinate (the spatial coordinate z), and the oscillation of membranes
and shells, heating slabs, spreading of cil patches on the sea or forest
fires are typical cases where there is process variable dependence on
two spatial coordinates. (The last two cases have recently become
especially interesting and their dynamics is the subject of intense study in
many countries.) Finally, dynamic temperature changes in heating large
casts (ingots) o1 the dynamics in steam generator evaporator pipes are
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today often analyzed by observing variable change in the whole volume
of the cast or pipe. which means dependence on three spatial
coordinates.

In the following text we have limited ocurselves to processes that
depend on only one spatial coordinate (z) and on time (t). For most
technical devices and plants this approach completely satisfies the
demands placed before the analysis of dynamic processes. It will be
shown that even for those " simplest” cases of spatial dependence the
mathematical apparatus and methodology of solution are of a higher
degree of complexity and with less possibilities for general solution than
was the case up to now.

Here too the description of dynamic phenomena and the solution of the
partial differential equations (PDE) obtained from that description will be
begun from the basic and simplest processes and mathematical structures,
after which we will proceed to more complex phenomena and
mathematical notation. In cases where complex and very extensive
expressions and structures are not obtained, we will also show the
analytical procedures for obtaining solutions of PDE.

At the very beginning of this third chapter it will be of advantage to
remember some basic and general characteristics of PDE. They describe
ime changes of state variables (concentration, temperatures, flows,
pressures, densities and so on) throughout the device or plant observed,
j.e. in every arbitrary point in space, of which there are of course
infinitely many. PDE therefore describe processes of infinite order. The fact
that in practice a state variable change is important on the output (input)
or in only several sections, and not in an infinite number of them, is not of
great help in this case because state variable changes in the section
under observation depend on the variable gradienis with respect to the
spatial coordinate, which makes il necessary to know the variables that
are infinitesimally close to that section also. Analogously, for that
infinitesimally close section the problem becomes {or remains} of infinitely
high order. For everyday technical practice. therefore, the task of
decreasing the model's -order will be one of primary importance, and will
as a rule be reduced to the possibililty of accurately calculating the
gradient of state variables with respect to the spatial coordinate with the
help of a finite number of points.
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The following must also be said in connection with PDE that will be
the basic tools used to describe and analyze dynamic processes
occurring in devices and plants along which parameters change. This parnt
of the book is not intended to be, nor should it be consideied, a
shortened veision or the repetition of books from mathematical physics or
special chapters from thermodynamics, fluid mechanics and mechanics, in
the sense that it gives answers and shows methods for classifying PDE,
analyzes pioblems of existence and uniqueness of solutions, shows
different methods for solving certain types of PDE and the like. Here, on
many examples that are encountered in everyday technical practice, we
will primarily try to indicate some basic dynamic properties and
characteristics of processes distributed in space and show methods of
deriving models for unsieady stale changes. To do this, in analogy with
lumped parameter processes, we will use Laplace transformation and
transfer functions. Wishing every model obtained to be solvable and
usable in plactice, in many examples we will also show how a model of
finite dimension is obtained, what is lost when the oider of the model is
reduced and how transcendental transfer functions are approximated by
transfer functions in the form of proper rational function.

From the aspect of process linearity, the use of Laplace transformation
and the formalization of symbols, we must tepeat and bear in mind the
remark that was aliready made at the beginning of Chapter 2. In all the
following cases when the PDE obtained are linear, for the state
variables observed they can also be considered as the equations of
the deviation of those variables from some steady state. In the process
of obilaining transfer functions. when the initial conditions are taken to
equal zero this also means that the initial deviations equal zero, i.e. that
the system is in steady state. Transfer functions obtained in this way are
valid both for absolute values of variable change from the initial zero
state (from initial conditions equal to zero), and also for changes of
variable deviation from the initial steady state. In such linear cases this
linearity will, therefore, not be specially stressed by introducing deviation
symbol A beside the variable symbols (for example. we will not write
Am, Ap, A8. and sc on, but simply m. ¢. 8).

Finally, we must add that the mathematical model for these processes
will also be derived from the equations for the conservation of
mass, energy and momentum, bul since the assumption of siate
variable equalitly throughout the whole finite volume observed no longer
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holds, these equations will be formulated for the infinitesimally
small part of the volume dV for which the upper assumption is fulfilled.

3.1 MASS AND ENERGY TRANSPORTATION PROCESSES
BASIC HYPERBOLIC FIRST-ORDER

PARTIAL DIFFERENTIAL EQUATION

The transportation of bulk material on conveyer belts and the process
of fluid flow through pipes, where heatl energy is carried convectively
from the pipe inlet to its outlet, are frequent, and the simplest examples of
processes with spatially distributed parameters. Figures 3.1-1 and 3.1-2 show
such processes of mass and energy transportation, and in the following
lines we will show that the dynamic properties of those processes are
described by the same PDE.

R R SR RO R

Z;O 43

Fig. 3.1-2 Convective heat transfer by liquid flow
In deriving the model the assumptions for Figure 3l1-]1 are :

- there is no side dissipation,
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- the transport velocity w is constant.

The equation for the conservation of mass in the volume segment
between z and dz is

mz. ) - [mz. 1) + —i“%—t)— dz] = —c-lc% (31-1)
Mass flow rate m and mass between z and dz are

m=A(Z)pw (3.1-2)
dM = A(2)edz (3.1-3)
The last equations give a hyperbolic first-order PDE

am(z.t) . w om(z.t) _ 0 (31-4)

ot oz

Before deriving the model that describes the propagation of heat
disturtbances along the pipe, the following assumptions are made:

- the pipe is insulated,

- the heat capacily of the pipe walls is neglected.

- the liquid flowing through the pipe is incompiessible, i.e.
u=1i-Pv=1i=cs

the flow velocity w is constant.

The equation for the conservation of energy for the fluid between 2z
and dz is

du

ufz, 1) - [ulz, ) + Eg—z—'—t)dz] ol=re (3.1-8)
Heat flow rate u and internal energy U are given by

u=mcéd (3.1-6)
U = Mc#9 = Adzecd (3.1-7)
Finally, the same hyperbolic first-order PDE is obtained

o%(z1) | waa(z.t) -0 (31-8)

ot oz
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In both cases the steady stale is determined by d/dt = 0, ie.
m = const. and § = const.

Equations (3.1-4) and (3.1-8) show that although the processes are in
fact different, dynamically they are obviously the same. In both systems
some variables (mass, heat energy) are transferred convectively along a
spatial coordinate. so both processes are described by a hyperbolic
first-order PDE. As a rule, only the amount of unloaded material, or the
liquid temperature, in section z = L is important, and if these variables are
1o be regulated (for the case w = const.) it is done by acting on m(0.t) or
8(0t). It would thus be advantageous to find the relation between those
two sections.

The discussion in Example | will be carmnied out for the case of bulk
material transport, but if we want to get expiessions for the case on
Figure 31-2, it is enough to replace m by 3 in the models obtained.

Before obtaining an expression for m(Lt), we must point out that the
amount of material unloaded fiom z = L. does not depend only on m(0.t),
i.e. on how much material is placed on the conveyer belt, but also on
whether there was a lot, a little or no material already on it when it was
put into operation. Mathematically expressed, it is necessary o know the
initial conditions (IC) m(z.ty). i.e. the distiibution of the material on the
conveyer belt at the moment t;. (Since we usually take t; = 0, zero will
usually stand in the place of t, and this will describe the IC; for example
m(z,0).)

Example 1 Conveyer system for bulk material transport. Time response

The process of bulk material transport on Figure 3.1-1 is described by
the following PDE and the given boundary and initial conditions

om(z.1) . w am(z.t)

ot >z =0 , (3.1-9)

BC:z =0, m(0, t}=1(t), t > g

iIC: t = to. m(z.to) = p(Z). z«(© 0D
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Velocity w = const. (1) and p(z) are given functions of time and
space.

a) Find the general analytical solution {(or the solution in a closed
form) and present it graphically for the following conditions

al) 1(t)

h=1 fort 20, p(z) =0,

a2) 1(t) = 0, p(z) =1, 0 c 2 = L

b) Find the transfer function G(s) = M(L.s)/M(0.s) = M(L,s)/R(s).

The simplest way to obtain solutions for the hyperbolic first-order PDE
is to use Laplace transformation that is camried out with respect to time 1!,
so that the initial PDE is transformed into ODE with respect 1o z in the
s-domain. Then the ODE obtained is solved in the s-domain by the usual
procedures and its sclution returned by inverse Laplace transform into the
t-domain. There is

om{z, t)} _ dM(z, s)

- iz = M'(z. s)

«f

Application of the above transform 1o (3.1-9) yields

sM(z. s) - p(z) + wM'(z.5) =0 , (3.1-10)

M'(z, s) = - > Mz, s) + p(z) . (3.1-11)

w w

The last equation is a nonhomogeneous first-order ODE with respect to
z in the s-domain, and it can be solved by the usual method of constants
variation. The general solution will thus be the sum of the homogeneous

and the particular solution

M(z. s) = Mu(z, s} + My(z. s) . (3.-12)

]

O

]
fn

Mn(z. s} (3.1-12a)

f
o,

S S_
M(z. s) WZJ—‘; p(e) e W ° e (3.1-12b)
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Substituting the expressions for My and M, into (31-12) and establishing
with the help of the BC M(0.s) = R(s) that the constant C = R(s). we get the
final expression which mus! be returned into the lime domain by inverse
Laplace transform

z
.5 S
M{z, s) = e w? [R(s) ‘Jvlv_ p(e)e ¥ ¢ dE] . (3.1-13)

Denoting the expression in the brackets F(s) and its original {(t) yields

S
Mz, s) =e ¥° Fs) . (31-14)

On the basis of the time translation theorem by which translation in the
domain of the original function {(t} cornesponds to damping of function
F(s} in the s-domain (which is the case above), the inverse transform
yields ‘

m(z, 1) = f(t - %) (3.1-15)

However, {{t) is still unknown and is obtained as follows

i) = £ {R(s) + Fi(s)} = 1(0) + 2 {F(s)] = (3.1-16)
z z
-1 1 %—E ] -] _§st
=1(1) + & [J;,— pg) e d&] = 1(1) +J7”— p(g)s¢ [e } dg
[ )
5t + %)
The solution of the integral on the right-hand side follows
z
f
—lv; p(E) 8(t + %) di (3117
c .
Substitution of ¢ = wt and dg = wd« into (3.1-1T) yields
z
[
plwt)s(t + t)dt = pl-wt) (3.1-18)
0

Inserting the last expression into (3.1-16) instead of the integral yields

(1)

f(8) = 1(t) + p(-wt) . (31-19)

According to Equation (3.1-15) the solution is translated., so the final
expression for m(z.t) is
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m(z, t) = 1{t - %) + plz - wt) . (3.1-20)

Figures (3.1-3) and (3.1-4) are a graphical representation of the solution
in three-dimensional space (m.z.t) for conditions al) and a2)

Consequently, for t » Ty there will be no more material on the
conveyer, i.e. m(zt > T) = 0.

b) By definition, transfer function G(s) 1epresents the ratio of output
signal transform to input signal transform, with initial conditions equal zero.
Thus G(s) is not difficult 1o obtain. It is enough 1o substitute p(¥) = 0 into
Equation (3.-13), aiter which the whole expression under the integral
becomes equal to zero and remains

2 rA
Mz, s) = & W° R(s) = M(O, s)e" ° (31-21)

If we insert z = L, we get

L
Gls) = ML.5) | WS

* Moo " (31-22)

Ratio L/w has the dimension of time and represents the time needed
for a particle travelling at velocity w to move from z = 0 to z = L. It is
usually given the subscript t (transported)

Ty = . (31-23)

(This time is also often called "dead" time because it is a period of
time during which nothing will appear in the section z = L if the IC equal
zero, m(L, t <« Ty) = O, ie. it is a period of time during which everything
will be "dead" in the output section. See Figure 3.1-3.)

The next equation is the well-known transcendental function (and no

longer in the form of a proper rational function) for transport processes
M(z,s) . z
2 ——— = ts = — -

G(z. s) MO s) - © . (T, o™ ) (3.1-24)

For the case of liquid flow where we seek connections between input
and ocutput temperatures, replacing M by 8 in the last equation directly
yields Equation (3.1-25).
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al) BCi{t) = h=1fort 2 0 h ..Heaviside unit-step function
IC p(2) =0,0 <z=s L
m(z, t) = h(t - %)

| miz,t)
1
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N
< 5 Z=wt LawTy
1 -7 L /7 /, z
t !/ T_‘Lf sm(z,t)=0 ’//
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Z_ ______ \\ ’4’ I’/,

Fig. 3.1-3 Changes in quantity of material m(z.t) for 1(t}) = h and p(z) = O

a2) BC (1) = 0
IC p(2) = 1,

m{z. t) = hz - wt)

fort » 0
0<z=sL
| miz,t)
| plzlet
mtz.t):!

Fig. 3.1-4 Changes in quantity of material m(z.t} for 1(t) = 0 and p(z) = 1
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8(z, s) -T1s
= — = 3.1-258
G(z. s) (0. 3) e ( )
It e Tt5 g expanded into an infinite series, the transfer function for

transpornt processes oblains the f{ollowing form
-Tis I
G(z, s) = S = . 3.1-26
(2, 5) = & Tis  (Ts)P (Tys) ( )
+ + + e
1t 2t 3

The denominator of Equation (3.1-26) contains a polynomial in s of
infinite order that has an infinite number of roots and thus confirms the
statement in the introduction to this thitd chapier about PDE describing
processes of infinitely high order. Since this denominator (which is also
the characteristic equation of the initial PDE (3.1-9)) can also be written

eTtS = Tt(o + Uj) = eTtO eTtmj

it can be seen that all those toots lie on the "straight line"” ¢ = -« in
the complex s-plane and that they all have an arbitrtary meaning for the
imaginary part.

On the basis of everything that has been said, it follows clearly that
spatially distributed processes can not possibly be
presented in the form of state-space equations, which was
always possible up to now for processes with lumped parameters. In this
case the dimension of the state vector x would be infinite It
must also be said that in these processes the highest order of derivatives
with respect to time does not equal the order of the system, which was
always the case in lumped processes.

In Example | we analyzed the really simplest processes with spatial
parameter dependence and with a selection of assumptions that “insured”
a model in the form of a linear homogeneous hyperbolic first-order PDE. In
the following example we will show how, if the assumptions are “marred"
just a little (which is often closer to the real case), more complex
mathematical forms are obtained to solve and analyze. (This change of
assumplions could mean that material also slides during transport, or that
it falls off the side of the conveyer bell, or that the pipe is not insulated,
and so on.)
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Example 2 Fluid flow through uninsulated pipe. Temperatute time
Iesponse

Derive a model for heat transfer by liquid flow through an uninsulated
pipe. whete the wall temperature is given by 8,(z, t). Heat siorage in the
pipe wall is neglected and the mass flow is considered constant (and thus
also flow velocity w). The consequence of the last assumption is that the
coefficient of convective heat transfer « is constant as well.

dwlz.t)
r—’“‘\,_‘,.———-,l*_//—‘——*_ﬁ
1
Jlo.ty ! - 3L,
—‘(E_L_._A - -—--i;q—i-———'- W=konst.—--4|-—(—"!-)-

] L]

e S R — |
z=0 z z=L

zedz

Fig. 3.1-8 Liquid flow thiough pipe and heat exchange with wall of
temperature &,(z, t)

This case is present in condenser heat exchangers and in their case
the assumption of constant wall temperatute, 8, = const, is usually
fulfilled.

Formulation of the equation for the conservation of energy for the fluid
between sections z and z+dz yields

d(Mces)
dt

med - (mcy + mc%dz) + aAy(oy - 9) = (3.1-21)

The area through which heat is exchanged is A, = 2iadz = Udz, where
U represents the circumference of the pipe. M = Apedz is the mass of fluid
in the observed dV. Arrangement of the last equation yields

a8(z. t) . w0z, 1)
ot oz

+ ks(z, 1) = kanlz, 1) . (3.1-28)
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The model is a nonhomogeneous linear hyperbolic first-order PDE and
linear r1elations will be retained as long as the assumption about the
constant flow velocity w is fulfilled. To obtain an analytic solution of
Equation (3.1-28) it is necessary to know the boundary conditions function
8(0.t), the initial conditions function $(z,0) and the disturbance function
8.{z. 1).

Coefficien! k is an important dynamic cosfficient and will be met in all
pipe heat exchangers. The dimension of k is s”' and its inverse value is
called the heat (thermal) time constant of fluid T = I/k.

For the case of the condenser heat exchanger where 9,{(z. t) = const.,
the steady state is characterized by the known exponential inciease of
fluid temperature 8(z) along the pipe. This expression is obtained by
solving an ODE with respect 1o 2, which is oblained from (31-28) by
inserting 98/3t = 0. The boundary condition is given by 3(z=0) = 3(0). This
gives the fluid temperature change in the steady state

#z) = Sw - 556 ¥ . 58, = B, - 5(0) . (3.1-29)
If 5(0)=0
32 =Ful-0 ¥ . (31-30)

and if both 8(0) = 0 and 8,(0) = O, the often used initial condition
equal to zero is obtained. ji.e. 3(z) = 0.

If we need to know the relation between f{luid temperature change in
an arbitrary section along the pipe and the input temperature (boundary
condition) 8(0.1), or the temperature of the pipe wall s,{z. t}), it is
advantageous to determine the transfer functions that define that relation.
Applying the Laplace transform to (3.1-28), for IC equal to zero, we get the
following ODE with respect to z in the s-domain

w‘_ﬂ%i;_?_)- s+ (s + K)O(z, 5) = keu(z, s) (31-31)
Solving that DE gives the demanded relation between temperatures
.5k, L o5
8(z. s) = e W 80, s) + ——————kou(z, ) . (3.1-32)
[E—— s + k
Gi(s)

Gz(S)
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It is important, because of comparison with the case when the pipe is
insulated as shown on Figures 3.1-3 and 3.1-4, to 1epresent the 1esponse of
the system (fluid temperature change at the pipe outlet) in the case when
the inlet disturbance is an impulse fluid temperature change, #(0, 1) = s(t).
(The wall temperature remains unchanged and equal to zero.) With 6(0, s)
= 1 the above equation yields

s+k 2 z z
8(z, 1) = éc'l[e w z] - oWk zl{ews} . vk st - 5) . (3.1-33)

An impulse response for the convective heat transfer process (transfer
by fluid flow)} in which there is heat exchange with the wall is thus an
impulse that propagates by velocity w along the pipe (with a time delay
of z/w seconds after the occurrence of the distutbance) and whose
amplitude decreases by the damping factor e 2K/W,

Jlzt)

Fig. 3.1-6 Propagation of impulse temperature disturbance
along the uninsulated pipe

Special attention must be paid to this decrease in amplitude shown on
Figurte 31-6 because it did nol exist in the case of the insulated pipe.
There the disturbance propagated along the pipe (transporter) unchanged.
For better comparison with Figure 31-3 (which is also valid for the
insulated pipe, as was mentioned in the first example) we should obtain
an analytical expression for temperature change along the pipe if 9(0, t) =
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i{t) = h(t) = 1 for t » 0. Substituting 6(0, s) = lI/s and @w(z, s) = 0 inlo
(3.1-32) yields

z z
2y L2
o(z.s) =e W e W® —:,‘—
whence
z 2 2z
oz, ) =e wk x‘l[ews 1;—-‘ - vk n(t - &) (31-34)

Figure 3.-T shows fluid temperature change.

o{zt)
!
\
\
SANC TN
N
N
< | \\
N \
| \ L
! | RN \\ //, z
! TN N dtzns0 /
1 5 ) Jid
| /2, /‘~e~$k\\ \\ //
-1,k
L N P4 e

Fig. 3.1-7 Propagation of step temperature disturbance along
the uninsulated pipe

The temperature piofile along the pipe is shown at the moment Ti.
Qutlet temperature is equal to e'Lk/ W . e'T‘k. which means that it is
considerably smaller than inlet temperature.

Pipe heat exchangers (parallel-flow, counter-flow and cross-flow) are
frequent parts of plants and plant units and typical examples in which the
dynamics of temperature change between the wammer and the colder
cuntent is described by a system of hyperbolic first-order PDE. In
continuation, afier accepting many assumptions, we will show how to
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derive a model for the parallel-flow and counter-flow heat exchanger. For
the former we will also show how to obtain the matrix transfer function
1elating input and output temperatures.

Example 3 Dynamics of parallel-flow and counter-flow heat
exchangers

Figurte 31-8 shows a sketch of counter-flow and parallel-flow (the
direction of flow is given by a broken line) heat exchangers for which
mathematical models for unsteady fluid temperature changes must be
derived. The assumptions are:

- both fluids are incompressible liquids.

- pressures, mass flow rates, flow velocities, cross-sectional
areas and heat transfer coefiicients are constant,

- the heat capacilance of the pipe walls., heat conduction in
the direction of the z axis and losses due to friction are
neglected,

- the coefficient of heat conduction through the pipe wall is
infinite.

|
'&Zi 1 '&20
t av
L

3, e am— 3,
———— _——ﬁa

Z J

|
2+dz 020; 32

Fig. 3.1-8 Schematic presentation of counter-flow and
parallel-flow heat exchanger
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[ T T T T S ——r T T T T T —r—ey
e e I L L L L L T T L AR AWy}
paraliel-flow B A,w, P RAM, s — 5 —dz
meu - 2 Az S dlwyu,)
2Y2 mpy+ —324-dz
A
PAw, | N % —aqQ BA W, + d(RAW)
m,u, QA myuy +d{mu,}
AR A W, )
F;Azwz-—ﬁa-}—Ldz 3, { ‘% B A,w, counter-flow
)
o 432 A A
Z
——y
Z+dz

Fig. 3.1-9 Sketch of control volume dV with heat inflow and heat outflow

Equations for the conservation of energy (power equalions) are
formulated for infinitesimal volumes of both the fluids between sections z
and z+dz.

ECE for fluid I:

myu, + PJAywy + Udzqg - (m,u; + 9(’:;;‘)dZ)‘ (P,A,W] + iE“:—Z'VQC’.Z) =
= —‘;—,t-(A,dzmu,) (3.1-35)
yields
) 3
S_(mlut + PJAwy) + —(Aspiuy) = Ug (3.1-36)
2 ot
Considering that
mu, + PAjw, = mu, + Pyvimg = my(uy + Pyvy) = mi; .
. oy - 200 _ oMy -
piuy = p4iy - P, Ay m 2 P = const.
differentiation of Equation (31-36) yields
2 o, U Y (s, -8 . (31-37)

a t ez T Aoy - Ap,

For liquids there is i = c9, so the last equation yields the final
expression for fluid 1 temperature change
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39z, 1) . w 3942, 1) . _Ua
ot ! 4z A‘p|01

(8, -9y) . (3.1-38)

The ECE for the warmer fluid 2 (the upper signs are valid for the
parallel-flow heat exchanger) is

3(mou,)

3(P2A,w))
¥4

rea

mou, + PoAsw, - Udzq - (mpu, dz) - (P;A,w;p

. %(Agdegug) (31-39)

In this equation attention must be paid to the negative sign in front of
the heat transferred to fluid I, and in front of the partial derivatives with
tespect to z in the counter-flow exchanger. These signs are what
distinguishe Equation (3.1-39) (for the heating fluid) from Equation (3.1-35)
(for the heated fluid) and they always reflect the fact that fluid 2 gives
heat to fluid I, and that the energy level of fluid 2 in the counter-flow
exchanger decreases in the negative direction of the z axis.

If the same procedure as the one carried out with the equation for
fluid 1 is performed, we get

a8x(z. 1) | a9x(z, 1) Ux
2 =
at -4 AspoCa

(8, - 92) (31-40)

Equations (31-38) and (3.1-40) are a system of hyperbolic first-order
PDE, and to solve them it is necessary to define ftwo boundary and
fwo initial conditions. In the counter-flow exchanger these conditions
are of the form

BC: 3,(0. t) = l'|(t). 32(]... l) = Iz(l) .
IC. 3|(2. to) = pg(Z). 32(2. to) = pg(Z)

The upper assumptions make the system of squations homogeneous, the
process occurs without distutbance and only because the boundary
conditions change. If the matrix differential operator R, is defined and the
coefficients k; = Ua/Ajpici, i = 1, 2 are reintroduced, the system of
equalions can be wrilten as follows

d

. *W|E - k] k1

8i(z. t) = R 8(z, 1) = B,8(z, 1) (3.1-41)
kg ;WZE - kz
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Obtaining closed form solutions for this system of equations is now a
rather more considerable task than when there was only one equation.
The process has increased in complexity. Hete we will, nevertheless, show
how to obtain the matrix transfer function which relates temperatures along
the parallel-flow heat exchanger as functions of boundary conditions:
temperatures 9,(0. t) and 8,(0, ).

With IC equal to zero, after Laplace transformation with respect to time
t the system of equations (3.1-4]1) becomes the following sysiem of ODE
with respect to z in the s-domain

de,(z, s) s + ky k,

dz - W, 91(2. S) + -‘;,-192(2. S) . (31-42)
deg(z. S) k2 S + k2

dz Ee‘(z. S) - 92(2. S) (3.1'43)

To make it easier to perform the following derivation we will assume
that the Iluids are the same (p, =p;. ¢; = ¢;) and that A, = A, and
w, = w, =w. This results in k, = k, =k. After introducing the symbols A =
-(s+k)/w and B = k/w, the above system of equations shown in matrix form
becomes

8z, s) ' A B 8z, s
= (3.1-44)
0,(2. s) 2 B 0z, s
. §

The solution of system (3.1-44} is
e(z. s) = AZe(0, 5) = ®(z) &, ) (3.1-45)

The transient or fundamental matrix @(z) is calculated according to the
formula

az B - 20 sz B - T

D(z) =
(2) - o A - A2 Az = Ay

(3.1-46)

2y and A, are the eigenvalues of matrix A obtained from the equatio ns
(A - 2) =0,

[
M=A+B= w (3.1-4T)
s ¢+ 2k

2= A -B= (3.1-48)

w
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Equation (3.1-46), after determining matrices By and F,, yields

chBz shBz Az eBZg B2 gBzg-Bz
@(z) = 2 -2 (3.1-49)
shBz chB eBZeBz  ¢B3,-Bz

Temperature interrelations can be shown clearly in a block diagram,
and this has been done in Figure 3.-10 according to Equations (3.1-45)
and (3.1-49).

9,(0,s) chBz | L S 6,(2,s)
—N——e! shBz A=-Stk
_k
shBz T B= -«
6,(0,s} chBz O Az [——= G,lz,5)

Fig. 3.1-10 Block diagram of interrelations between input and
output temperatures in the parallel-flow heat exchanger
(k| = kz = k. Wy =W, lW)

Equations (31-45) and (3.1-49) make it possible to determine
lemperalures along the whole heat exchanger for given temperature
changes 8,0, 1) and 8,0. 1). If 8 undergoes unit step increase, i.e.
8,0, 1) = h(t). the temperature change of both fluids is given by the
solution of the following equation

k k k k
= -z —2Z -z
8(z. s) -S—;sz oW .o VW oW - e W —lé—
e
= k k k k (3.1-50)
2 “Z w2 wZ ~“w?
0.(z. s) eW . oW eV + oW 0
Rearrangement and inverse Laplace transformation yields
z
-2k
l+e z
8y(z. 1) = T h(t - —w) . (3.1-51)
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22
e

s{z.t)-l- 7

2z
h(t - Tv-) . (31-52)

For the case of k = |, pipe length L = 1| m and flow velocity w = | m/s,
Figure 3.1-11 shows temperature changes of both the fluids along the whole
exchanger after Ty = L/w = ] second. It must be observed that when
2+ o 9 and 9, converge to the value 0.5, and this differs from the
results in Figure 3.1-T (8, = const) where the f{luid temperature $
converges to zero.

Jz.
9,12,0)=1
-
I
|
Yz !
|
05— 1
3z |
!
|
i
!
02 04 06 08 L=t z

Fig. 3.1-11 Temperature profile along heat exchanger pipe after
T\ seconds in the case 80, t) = h(t}) = ]

This last example shows how technical devices with 1elatively simple
geometry and for which a whole series of assumptions has been made.
have complicated mathematical models which make it difficult to obtain
analytically the demanded responses in the case of disturbed boundary
conditions. Therefore it, and also the many examples that follow. shows
why everyday technical practice aspires to methods of direct numerical
simulation of PDE in the examination of dynamic propeities of specific
piocesses, o1 to approximation of transcendental iransfer functions which
always appear in processes that are distributed in space.
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In the previous discussion of heat exchangers the possibility of heat
accumulation in the walls of the pipe was neglected. In a great number of
cases for thin-walled pipes this is completely justified. However. when ths
wall of the pipe is thicker, or when the heatl capacitance of the wall is of
the same order of magnitude as the heal capacitance of the fluid (which
the model builder must evaluate at the beginning). the process of heat
storage in the pipe wall must be taken into account as well. The following
exarmple shows changes in the model of unstationary temperature change
for that case.

Example 4 Fluid flow with heat storage in the pipe wall

Fluid flows through a thicker pipe, externally insulated. Derive the
transfer function relating output fluid temperature change with input fluid
temperature change, taking inlo account possibilities of heat storage in
the wall. Assume that the coefficient of heat conduction in the radial
direction is infinite, which means that the temperature of the wall is the
same in its whole thickness. Neglect heat conduction in the direction of
the z axis. The other assumptions are the same as in the preceding
example.

RO e SCRCIU I b A N ey SRR e

J(0,4) —= JL.t)

7
W//

.
/////// 7 %

Fig. 3.1-12 Convective heat transfer through an insulated pipe with
heat storage in the pipe wall

Because of the appearance of a new possible heat storage tank
equations for the conservation of energy both for the fluid and for the

pipe wall must now be dserived.

ECE for the fluid:
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a(mcs) o(Adzpcs)

mcs - {(mco + ——az——dz) - alUdz(s - 9y) = 3 (3.1-83)
The above equation yields

a9 a8 ol

F + WO—Z_ = l—gc—(aw - 3) R (3.1-54)
ECE for the wall:

A%w

AwowadZ? = aUdz(& - 3w) (31'55)
o AwaCw(s Sw) (3.1-56)

The system comprising Equations (3.1-54) and (3.-56) is a model for
unsteady fluid and wall temperature changes and to solve it we must
define the following boundary and initial conditions:

BC: 8(0. 1) = (1)
IC: 8(z. 0) = py(2). 9n(z, 0)= py(2)

The transfer function relating fluid temperature along the pipe with the
given boundary temperature at z = 0 is obtained after Laplace
transformation of Equations (3.1-54) and (3.1-56) with IC equal to zero, and
after solving the ODE obtained with 1espect to z in the s-domain for {luid
temperature $.

524’(k|+k2)5 2

G(z. s) = %%—3— .o VKD (3.1-57)

The cosefficients k have the same meaning as before

ol
1 = AOC (31-58)
ol
k2 = Kuowow (31-59)

Their inverse values are fluid thermal time constant Tr and wall thermal
time constant T,

K, U , (31-60)
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Tw = klz - -“‘W—u"u"!c—w— : (3.1-61)

The transfer function G(z.s} given in Equation (31-87) is a more
encompassing and general form of transfer function for the pipe heat
exchanger. From it we can obtain as boundary cases the transfer
functions derived earlier if we make assumptions that were left out in this
case. Thus, for example, if we allow the coefficient « 1o converge 1o zero,
i.e. if there is no heat transfer onto the wall, the transfer function (3.-87)
becomes the already known iransfer function that was derived for the
"pure” transport process in the case of the insulated pipe in Example |,
given by Equation (3.1-28).

This ends the presentation of the dynamics of convective mass or
energy transfer, better known as transport processes, whose unsieady state
changes we described in the form of a hyperbolic firstorder PDE or by a
system of hyperbolic first-order PDE. These are also the simplest pirocesses
distributed in space and their analysis will be of use for understanding
more complex phenomena.

3.2 PROCESSES WITH EQUALIZATION
BASIC PARABOLIC PARTIAL DIFFERENTIAL EQUATION

This name describes processes in which differtences in potential result
in an equalization of conditions throughout the system under observation.
The most typical examples met in everyday practice are heat conduction,
diffusion and the motion of viscous (sticky) liquids. Common to all these
physically different processes is again their mathematical notation: their
dynamics is described by parabolic PDE. In this seclion we wil
completely analyze the process of heat conduction, but the derivation of
equations, methods for solving them and the solutions themselves are
identical for this whole class of problems, and to obtain a satisfactory
physical interpretation it is enough to give coefficients their real meaning.
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If certain assumptions are made, i can be shown that all the processes
mentioned are described by the following PDE,

au 3%
u, g (32-D

Depending on the nature of the process. u and a have the following
physical meaning:

Heat conduction: u — temperature, a = A/cp — coefficient of thermal
conductivity

diffusion: u — concentration, a = D — coelfficient of diffusion

motion of viscous liquid: u — particle velocity, a = v — coefficient of
kinematic viscosity

Of course, as assumptions change so does Equation (3.2-1). It gets new
terms and expands. Nevertheless, the form it is shown in is basic for all
processes with equalization.

Example 1 Heat conduction through homogeneous insulated body

Figure 3.2-1 shows a prismatic body insulated on all its lateral sides.
Derive the equation describing temperature change along the spatial
coordinate and in time, and express mathematically the f{ollowing
boundary conditions:

a) given temperatures are maintained at the ends of the body (frontal
cross-sections),

b) a given heat flow rate is externally supplied to the ends of the
body,

c) there is convective heat transfer from the ends of the body to the
environment.

Also derive transfer functions characterizing heat conduction for the
boundary conditions for case a), and for a combination of boundary
conditions for cases a) and b).
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Assumptions:

temperature is uniform on a cross-section of the body,

the body is homogeneocus,

heat conduction is observed along the z axis only,

the coefficient of thermal conductivity A is not a function of

temperature.
dM Adzp
304 //// / /
\ ALY
qlz,t) q(zt)o
' - 5@ 11 ey I
WIT Zannnssz2sZ a0l
¥ 141
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) z | |
! z2+d2 {
z=0 z=L

Fig. 3.2-1 Heat conduction through homogeneous insulated body

The balance of heal energy is formulated for a infinitesimal volume dV
of the body

alz. DA - [q(z, 1) + i"—%zz_-_‘ld 1A= dU - Aoc 28(z, 1)

S dz (3.2-2)
Reartangement of (3.2-2) yields
aglz, ) as(z. 1)
5z = P (3.2-3)

The density of heat flow is known to be proportional to the spatial
gradient of temperature and is expraessed as follows (Fourier's law)

28(z, t)

aqlz, 1) = - > 5 . (3.2-4)

Substitution of (3.2-4) into (3.2-3) and differentiation yield

28(z. 1) a%s(z, 1)
o =a—%x (3.2-5)
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Consequently. the dynamics of temperature change along the body is
described by the linear parabolic PDE (3.2-5).

If we want to know the temperature in a specific cioss-seclion at a
given moment we must know the temperatute distribution atl {, = 0, which
is considered the beginning of calculation (i.e. we must know the initial
conditions), and also the conditions at the edges (boundaries) of the body
(boundary conditions), i.e. how the body "contacis” its environment.

The initial condition is identical to the one for the hyperbolic
first-order PDE

IC: 3(2. to) = p(Z) .0z« L
and it describes the temperature piofile along the body at 1,.

The boundary conditions, according to demands made at the
beginning of the task. can be of three kinds:

a) 8(0, t) = £1), oL, 1) = (1) ., (3.2-6)
b) - m.ﬂg_l)_ = o), m—"%%ﬁ- - qul) . (32-7)
o) 200 | X g0 -] 2D L Sl - 1]

(3.2-8)

The functions p(z), {,(t). 1:(1). q,{t) and q t) are given. {,(1} and (1) are
temperatures of the environment at the boundaries 2z = 0 and z = L, and
a,(t) and qg,(1) are heat flow rates (i.e. the amount of heat in a unit of time)
forced on the ends of the body. It is obvious, but should nevertheless be
mentioned, that besides the thiee above pairs of boundary conditions.
their combinations are also possible, for example, temperature (1) can be
given in z = 0, and convective heat exchange in z = L, i.e. boundary
conditien ¢). a), b) and ¢) do not show all the ways in which heat can be
transferred to the end cross-sections. For example, thete can also be
radiation o1, if there is firm contact with some other surface at z = 0 and 2
= L combined with low thermal resistance, heat will be transferred by
conduction.
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The boundary conditions shown by c) are the most general and
conditions a) and b) can arise as boundary cases of Equation (3.2-8).

If the convective heat transfer coefficient « is very large, theorsetically
even infinite, in other words if it is much greater than A, condition ¢)
becomes boundary condition a) because « & « leads to $(0, 1) = {,(1) and
(L, 1) = f,(t). But if « is insignificant, in other words if heat iransfer on the
edges is completely impossible, condition ¢) becomes boundary condition
b) for q,(t) = qt) = 0. which r1eally satisfies the case of insulated {rontal
cross-sections.

The transfer function for the condition p(z) = 0 will again be obtained
alter Laplace transformation of Equation {3.2-8) with respect to time t and
solving the ODE obtained with respect 1o z

d?e(z, s)

T L %G(Z. s) =0 (3.2-9)

Solving Equation (3.2-9) yields

o(z. s) = Cio T&z, czﬁ_ z (3.2-10)

The law according to which temperature changes along the z axis, i.e.
the transfer function that shows that law, obviously depends only on
conditions at the boundary of the body. Thus C; and C, depend only on
the manner in which the process occurs at the boundaries. so they must
be specially determined for the conditions given at the beginning of this
example.

TEMPERATURE IS GIVEN AT BOTH ENDS

Boundary conditions: 8(0, t) = {(1), z = 0 (left end) 8(L, t) = (1), z = L
(right end)

Substituting these boundary conditions inte (3.2-10) yields the
expressions for C, and C;

YENY

B
25h(7/~§—L)

i(s) - FJ(s) , (3.2-1)

1
2sh(y5- L)
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V5L ,

-
Fy(s) + L
A sh(5 L)

e F . 3.2-12
2 Zsh(/%L) 2(s) ( )

Inserting C; and C, into (3.2-10) and substituting boundary temperatures
o(0, s) and o(L. s) for Fi(s) and F.(s) yields

'S (1. /S
oz, &) = SUECD] oy, SO (3.2-13)
sh(/3 L) sh(y3-D

or

e(z, s) = Gz, 5)6(0, s) + Gy(z, s)e(L, s)

TEMPERATURE GIVEN AT LEFT END, RIGHT END INSULATED
Boundary conditions:

80, 1) = {,1). z= 0

as(L. t)

32 =0, z-=L

The coefiicients C; and C, can be obtained from Equation (3.2-10) and
its differentiation with respect to z (lo satisfy the second boundary
condition). It is not difficult to prove that

Cy = ———— 6(0, 3.2-14
1 2ch(7% 0 e(0, s) { )

JE
JTEL

—=2——— o0, 3.2-15
2ch(4& L) o(0. =) (3:219)

Cg =
Equation (3.2-10), referring to (3.2-14) and (3.2-15), yields

o(z, s) _ ch[/&(L-2)] (3.2-16)
6(0.5)  cn(EL) '

Gg(z. 5) =
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It must be observed that the equations for transfer function (3.2-13) and
(3.2-16) are functions of both variable z and variable s. There is an
unlimited number of such transfer functions, and it is possible, using the
corntesponding z, to determine for every cross-section the relation between
its temperature and the given boundary conditions.

The transfer function {3.2-16) will be of use to analyze the following
example, which is typical for a whole class of process devices - direct
heat exchangers with a thick wall.

Example 2 Direct heat exchanger with a thick wall

Figute 3.2-2 shows an externally insulated tank with a thick wall
in which a liquid is heated and intensely mixed, insuring its uniform
temperature throughout the whole volume. The piocess demands that the
outpul temperature must be controlied. For constant input and output m,
the only disturtbance variable is the input fluid temperature 8. The heat
supplied by the electrical heater Qg is in this case a manipulating
(controling) variable. Determine the transfer functions relating liquid
temperature $ in the tank with input temperature 8¢ and heat Qg;.

Assumptions: perfect and vigorous mixing so that the coefficient of heat
trtansfer onto the wall can be considered very large ( « & «) or, which is
the same, the wall temperature on the inner surface can be considered to
equal the fluid temperature in the tank 8,(0, t) = 8(t).

Y

Fig. 3.2-2 Heater with a thick wall (direct heat exchanger)
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The equalion for the conservation of (heat) energy yields

mcidf + Qe - Mcis - Q = Mcri—“: (3.2-17)

Q is the heat flow 1ate on the tank wall and it can be expressed as
the time change in heat energy stored in the wall

dE
0-5 (3.2-18)

Knowing the law governing the temperature change of the wall 8,(z. t)
along z, E can be expressed as

L
E = Jprcwsw(z. t) dz {3.2-19)
0

Substituting Equation (3.2-19) into (3.2-18) yields

L

o) = g‘—t Jprcwsw(z. t) dz (3.2-20)
9

If we consider that E(0) = O at t = 0, Laplace transformation of (3.2-20)
yields

L
Q(s) = s Iprcwew(z, s) dz (3.2-21)
(4]

Inserting ©,(2, s} from Equation (3.2-16) into (3.2-21) gives the f{inal
expression

Ols) = AewCws (1571 )g(s) (32-22)
e

Transformation of Equation (3.2-17) into the s-domain, substitution of
(3.2-22) for Q(s) and shorter rearrangement yield

01s) = G(s)og(s) + G(s)Qe((s) (3.2-23)

mcy
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1
M ApwCws
oSt e th(/F L)+ ]

V5 mey

The transfer function G(s) completely determines changes in the fluid
temperature § in the tank for arbitrary changes of 81 and Q.

G(s) = (3.2-24)

This example has not been chosen only to show that transcendental
forms appear in G(s). {That this is so in spatially distributed systems has
probably alteady been accepted and is clear.) Here we want to show that
the transfer function (3.2-24) is a general form that comprises (as boundary
cases) transfer functions that were obtained when this heater was
observed as a system with lumped parameters (Equations (2.3-32) and
(2.3-40 ).

a) The tank walls are made of an insulating material for which x» = 0.
In that case

1 l

G(s) = -
MS+ Aowcws th{ ,/ prws L)+ —Lis + 1
. A - (3.2-25)
0

Equation (3.2-23) has thus become (2.3-32).

b) The tank walls are made of a material with very great thermal
conductivity { A » o and 8,(z, 1} = 8(1), 0 ¢« z ¢ L).

In this case, when A =+ «, it can be shown that the middle term in the
denominator of the transfer function (3.2-24) is

lim AowCws ]/ owlw 1y . AlewCw (3.2-26)
A=+ /pwcws mey mcy

Referring to (3.2-26), (3.2-24) becomes

G(s) = (3.2-27)
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Thus G(s) in Equation (2.3-40) is the limiting case of Equation (3.2-24)
for » = =, and equals the above Equation (3.2-27).

The next step in the analysis of heat conduction dynamics would be to
solve PDE (3.2-8) for some given geomelty of the body (slab, cylinder,
semi-infinite solid bodies., sphete and so on) and given initial and
boundary conditions. Such an analysis would surpass the planned
framework and purpose of this book. It is the subject of whole chaplers
and books on thermodynamics and the equations of mathematical physics
that treat the more limited problems of unsteady heat conduction, diffusion
processes and the like, and give very detailed solutions and methods for
solving parabolic PDE. Nevertheless, this book does cover an analysis of
the dynamics of heat conduction through pipe walls of the type found in
classical heat exchangeis, in evaporator surfaces of steam generator and
the like.

A common feature of most pipe exchangers is that the wall thickness is
much smaller than the pipe radius (which makes it possible to neglect
surface curvature} so that heat conduction through the wall can be
observed as heat conduction through a flat surface.

The following example will show how to obtain a transier function, how
to analyze the dynamic properties and related characteristics (poles and
zeros of transfer functions) of heat conduction processes through the pipe
of the heat exchanger, and especially show how to reduce the order of
the system and obtain transfer functions in the form of proper rational
function.

Example 3 Heat conduction through the exchanger wall

For the pipe wall of the heat exchanger shown on Figute 3.2-3
determine transfer functions describing changes in the heat flow rate q,(t)
transferred from the wall onto the heated f{luid depending on heat flow
rate q,(t) brought to the pipe by heating gases and the temperature 8¢(t)
of the heated fluid. The dynamics of thiee cases will be analyzed:
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a)
- forced radiation heat flow rate q(t) on the side of the heating
gases
- very high coefficient of convective heat transfer o, onio the
heated fluid
b)
- forced radiation heat flow 1ate q(t) on the side of the heating
gases
- finite coefficient of convective heat transfer «; onto the
heated fluid
c)

convective heat transfer on both surfaces of the wall with
finite heatl transfer coefficients «) and «,.

z=0 z=0

Fig. 3.2-3 Heat transfer through exchanger wall

The conditions a) and b) comespond to conditions that are often
realized in steam generator evaporator pipes.

a) Forced heat flow rate q,(t) and an infinite heat transfer coefficient «,
ge! the following mathematical form for boundary conditions in z = 0
and z = §

25(0, t) -

Ist BC -2A
oz

q,(t) ,z2=0
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2nd BC 8(s, ) =8it) , 2=3

Substituting the BC in cross-section z = 0 into Equation (3.2-10), which
has first been differentiated with respect to 2, and the BC for z = 5 into
Equation (3.2-10), yields constants C, and C,

Irorym
0{(5) . =] A s Ol(s)
JEs A

C = , (3.2-28)

ZCh(f%Q s 5)

01(5)
AAYER g

C,=C - (3.2-29)

The final expression for temperature distribution along the z axis in the
wall is obtained after the above expressions are inserted into (3.2-10).

The following equation determines heat flow rate from the wall onto the

heated fluid in the s-domain

Os) = - u‘?‘-‘-’%—j—’ . (3.2-30)

After z = § is inserted into de(z, s)/dz. multiplication by -:A and
rearrangement yields

i
Qa(s) = —;E:Ff——s—s—)‘ Qy(s) - XAV%E s th(y%ﬂ s 8) 6¢(s) (3.2-31)

G,(S) Gg(S)

The transfer function G(s) describes the dynamics of heat conduction
through the pipe wall, and G,(s) the dynamics of heat flow rate change
resulting from temperature changes of the heated fluid.

To investigate the dynamic properiies of heat conduction we must
analyze the denominator of the transfer function G(s). The term cps?/x has
the dimension of time, so we will represent it as the time constant T,, (it is
useful to compare T, with the time constant from Equation (2.3-14) ).
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0982
A

Tw (3.2-32)

The denominator of Gi(s) now becomes chyTy s. For a finite s this
function has no singularities, so the roots of

chyTys = 0 . (3.2-33)
are the poles of the transfer function G(s). Introducing the substitution
YTws = x +jy (3.2-34)
Equation (3.2-33) becomes

chx cosy + jshx siny = 0 . (3.2-35)

This is satisfied only when both the real and imaginary parts equal
zero. which is fulfilled for x = 0 and for all y that satisfy

cosy = 0 . (3.2-36)
ie.
Yk = (2k - 1)7" Lk =0, ¢, 22, ... (3.2-37)

Inserting these values into (3.2-34) yields the expression for the poles
of the transfer function Gq(s)
(2k - D22 1
- i o k=123 .. (3.2-38)
(Since for k ¢« O there is sy, = s; and sk = sk + 1, it is enough to take
only positive values for k., which is sufficient to determine all the poles.)

The expression (3.2-38) indicates that G,(s) has an wunlimited
number of negative, real and different poles. The fact that the
peles have no imaginary parts shows that the process of heat conduction
(and this will also be true of all other processes with equalization
described by a parabolic PDE (3.2-1) ) cannot have an oscillatory
(periodic) character.
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When the poles have been determined, the transfer funclion can be
written in the form of an infinite product

T Sk Sy Sg S3

1
chyTys -kl;Il (s - s (ss)) (5-55) (s-s3)

In other words, G(s) can be replaced by an unlimited number of
proportional first-order systems in series with different time constants,
which can be calculated from

Gys) = (3.2-39)

Te=-—+— k=123 . (3.2-40)
Sk

Table 3.2-1 for the case of a steel evaporator pipe of wall thickness 5
mm (A = 46.5 W/mK, ¢ = 500 J/kgK, ¢ = 7850 kg/m?®) gives the values for
the first five poles and their cortesponding time constants.

Table 3.2-1

Sk Ty [s]
-1,169 | 0855
-10523 | 0,095
-29232 | 0,034
-57295 | 0,018
-94,714 | 0,011

nisfwinl=-{=x

Figure 3.2-] shows the distribution of the poles in the s-plane.

jw

Sz 51

n
{

»~
ll:‘gl

Fig. 3.2-4 Position of transfer function poles for processes
with equalization

Here it is very impornant o observe the gradient of decrease of time
constants (and this is not a function of the thickness or physical
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properlies of the wall) where the 2nd, 3rd, 4th .. time constants are about
10, 30, 60 and 100 times smaller than the first. They decrease =*(2k-1)%/4
times. This distribution of time constants shows that it is possible to
replace the iranscendental transfer function G,(s) with a rational transfer
function of a proportional first-order system whose time constant is similar
to the first, dominant time constant in Equation (3.2-39). In this way we
would, however, neglect all the very rapid iransient processes which are
characterized by the 2nd and higher time constants in the product
(3.2-39). This was already done in the section on lumped parameters
(Equation (2.3-14)). and here it remains for us to show the kind of thinking
that made it possible.

Besides being expanded into the product shown, G,s) can
mathematically- also be expanded as follows

] I
chyTws (YTws )2 (YTws )*
I+ 3 + 20 4+

(3.2-41)

It all the terms of 4th and higher order are neglecled, rearrangement of
the upper equation yields the approximated transfer function G;(s) which
has already appeared in (2.3-14)

(3.2-42)

The time constant characterizing Equation (3.2-42) for the above
defined pipe wall is 1.055 s, which is only slightly more than the value of
T, = 0.855 s.

Finally, we will give a graphical represeniation of changes in heat
flow r1ate q.(1) if the flow rate q,t) of the heating gases suddenly
increases by a unit value. Figure 3.2-5 shows two curves: curve a shows
the 1eal changes of q,(t) given by the transfer function (3.2-39), and curve
b shows the response q,(t) given by the approximate model, Equation
(3.2-42).
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TTe055 . 2 . . . 3 - . 4s t

Fig. 3.2-8 Change in heat flow 1ate g,(1) in the case of a step increase
in q((1) on the heater side

The curves show that there -are differences at the beginning of the
transient process (for small t) that result from neglecting poles that are
more distant in the negative direction of the real axis, i.e. because fast,
high-frequency response components have been neglected. Of course, the
newly achieved steady state will be the same in both cases, and for t -+,
QQ(t)*Q}(i).

The transfer function G,(s) shows how the heat flow rate that is
transferted from the pipe wall onto the evaporating fluid is affected by
temperature change %1} of the fluid (in the evaporator this is caused by
changes in the pressure of evaporation). To analyze the dynamic
properties of that process further, G,(s) can be shown as follows

sh(/%g—s' 5)

Qqls)
G (s) = ——— -XA —_—
: R s )

81(s) (3.2-43)

The denominator of this transfer function equals that of Gy(s). so the
poles will be the same as the ones that have just been derived and
expressed by Equation (3.2-38). Gu(s). however, also has zeros and they
influence the transient process as well. They can be obtained fiom
equation

M{/Es sh(ySPss) = 0 . (3.2-44)
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If Ko = 2»A/8 W/K is introduced and the above equation divided by
this Ko, referring to (3.2-32), Equation (3.2-44) yields

YTws shyTys = O . (3.2-45)

The substitution given by Equation (3.2-34) is also used here. so the
last equation becomes

{x + jy)d{shx cosy + jchx siny} = 0 . (3.2-46)

This product equals zero if any of the factors equal zero, whence the
demand x = O and siny = 0. The final expression for the zeros of the
transfer function Gy(s) is

k?n?

Tw '

ng = - k=012 . (3.2-47)

Figure 3.2-6 shows the first 5§ zeros and poles of the transfer function
G.(s) in the s-plane. For the given steel pipe from (3.2-47) we get: n, = 0,
Ny = ‘4.6?7. Ny = ‘18.?1. Ny = '42.1. Mg = -T4.83.

jw

Sg Sy S3 Sz S

-100 Ns

Fig. 3.2-6 Zeros and poles of transfer function Gy(s) = Q,(s)/e(s)

On the basis of the analysis and procedure analogous to the one we
used to obtain Equation (3.2-39), the transfer function G,(s) can be written
in the form of the following infinite product

YTws sh{Tus s(s-ny)
GZ(S) = 'Kpch/‘fv’—s = - p H (S Sk)

(3.2-48)

s(s-n)(s-n,)..(s-np)...
P (s-8,)(5-8,)..(s-8p)...

Two essential facts are obvious: the heat flow rate q,(t) shows
derivative dependence on f{luid temperature change $(t) (the appearance
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of an independent s in the numerator of G,(s)), and since all the poles are
negative and real, q,(1) has no oscillatory properties in this case also.

If we wani to show how g,(t} changes with time if ${1) undergoes a
step unit decrease, the following equalion gives an exact analytical
solution

+f 1 {Tws sh 7 Tws
qot) = - Kpsf' §-— .
S ch,/Tws
After inverse Laplace transformation we get q,(t) in the form of an
infinite sum of exponential functions

(3.2-49)

T - _kzl“_’__
qz(t) = x,,]/ 2 (s zkgl(-nk e ' ). (3.2-50)

Investigation into q.(t) has shown that for t = O, q,(1) is infinite and as
t appioaches infinity the density of heat flow rate q,(t) converges to zero.
On Figure 3.2-T curve a shows changes of the transfer function g(t).

q,lt) |

2K

Fig. 3.2.T Change in heat flow rate g,(t) in the case of a unit step
temperature 9;(1) decrease

Just after (1* = 0) the step decrease of 8; heat energy stored in the
surface layer of the wall is immediately released. This amount, however, is
infinitesimally small (the heat flow rate q,(t} must not be confused with the
heat released Q(t)) and as all the other layers of the wall in the 2z
direction offer thermal resistance. the heat flow rate q,(1}) decreases very
quickly. For small t the gradients of change g, are very gisat, and only
after the deep layers of the wall have been included in the process of
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heat conduction and transfer towards the fluid of lower temperature 9¢
{which takes a certain finite period of time) does the change g,(t) become
less steep.

Here again the complexity of G,(s) inviles us to try to approximate this
transcendental transfer function by a simpler function in the form of
rational polynomials. The simplest approximation obtained from Equation
(3.2-48) is to retain in the expansion of the function G.(s) only processes
with the greatest time constant, i.e. to neglect all terms of a third and
higher order in the expansion of transcendental hyperbolic functions. The
approximate function G,,(s) is obtained from the following expansion

VTWS (VTwS + "')
i (fTws )?
. = b oo

Goals) = -Kp (3.2-51)

This has given us the well-known transfer function of the derivative
system with first-order lag. whose response to unit step decrease in the
temperature of the heated fluid is shown by curve b on Figure 3.2-7. As in
Figure 3.2-5, here also the same r1emark holds that neglecting fast
processes (higher-order terms of the development) leads to different
1esponses at the beginning of the iransient process, but that this
difference between real and approximation-generated tesponse curves
decreases with the increase of time t.

This ends the analysis of the case when the coefficient of convective
heat transfer on the side of the heatled fluid can be considered infinite.
The closest to this are evaporation processes in steam generator pipes.
There the coefficients n, are really high, but not infinite, so it is of interest
to examine the case (given by b) in this example) when the coefficient of
convective heat transfer a, is finite.

b) Forced heat flow rate q,(t) and a finite coefficient of heat transfer «,
lead to the following mathematical formulation of boundary conditions

st B a0 Loy z-0
22
2nd BC "3%—'2—‘)— = -°‘;— (5. 1) - 8¢(1)). z =3
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Like in the preceding case, C, and C; are determined depending on
the boundary conditions

®2gs) D(s) Qqs)
o E(s) »A .
C' B(S) . D(S) . (32 52)
%2615} - B(s) Oi(s)
- A E(s) »\A .
C? B(S) . D(S) . (32 53)

B(s) = (/%8s + 22) g 'Tws . (3.2-54)

A
D(s) = (ySes + =) e Tws (3.2-55)
EGs) = /S8s . (3.2-56)

The temperature of the pipe wall along the z axis e(z, s) is determined
by Equation (3.2-10), and z = § gives the temperature on the surface facing
the heated fluid. If we know (5, s). the heat flow towards the fluid is
determined by

Qas) = Qs s) = azA[e(s, s) - e4(s)] . (3.2-5T)

Substituting 6(s, s) into this equation and arranging it yields the
expression demanded

1

02(5) = O|(S) -
chyTas + a—)‘g— YTws sh{Tus

2

Gals) (3.2-58)
- K, YTws sh {Tws o/(s)

chyTws + o-‘x—s—/Tws sh /Tys
2
Gn(S)

In the further text we will not repeat the methods and procedures used
in the preceding case. especially since these calculations are much more
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complex and the resulls obtained do not show any essentially new
quality. The basic characteristics of the process for the above boundary
conditions are the following.

The poles of the transfer functions Gi(s) and G,(s) are siill negative
and real and there is an infinite number of them, but now they cannot be
given in explicit mathematical form. They are. therefore, obtained
graphically-analytically and given in tabular form. The first pole. which
also characterizes the process with the greatest time constant, is
determined by the f{ollowing approximate formula for the case of
(xp8/2) > Q.

n? 1 1

. (3.2-59)
1+ 2'24(_9_%)'1.02_1‘_\;

The r1esponses g (t) 1o step changes q1) and 84(t) are still of
unperiodic character and are completely similar in form to the preceding
case, and the transfer function qy{t} again shows a derivative response in
the case of disturbance in 8¢(t). Unlike the preceding case. however, qu(t)
is no longer infinite for t = t,.

It is interesting that very good approximations of transfer functions
Gi(s) and G,(s}) can also be realized now if all the terms of third and
higher order in the expansion of the transcendental functions chyTws and
sh/’I‘_w? are neglected. The responses obtained from these transformed
functions are close to the 1eal 1esponses, but because higher-order terms
have been neglected, which means all the fast, high-fiequency paris of
the responses that participate in the dynamics of the process, there are
insignificant differences a! the beginning of the transient process.

The approximated transfer function Gs,(s) is obtained as follows
]
G3als) = - (3.2-60)

2
R R R ™

1
| 5
COS(E + T)\—)S + 1

This is obviously a transfer function of the proportional system of first
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order and it is important to note that the time constant oblained is in fact
equal 1o the expanded (with the temm l/«,) time constant that
characterized heat conduction when it was observed as a process with
lumped parameters: Equations {2.3-14) and (3.2-42).

If the hyperbolic functions comprising the transfer function G,(s) are
expanded into a series and the higher-order terms neglected., G,u(s) is
obtained

s
G4a(5) = - KpTw 1 3 (32'6])

CQS(-M—2 + 2)‘)s + ]

The transfer functions Gja(s) and G,(s) are completely identical with
the approximated functions G;,(s) and G,a(s) shown by Equations (3.2-42)
and (3.2-51), differing only in the time constant. It is important to note that
Gia(s) and Gga(s) are special boundary cases of Equations (3.2-60) and
(3.2-61) with the assumption of an infinite «,.

Keeping to our usual (inductive) manner of presenting and analyzing
dynamic properties and proceeding from the special and simple to the
general and more complex, it still remains to analyze the case when
there in convective heat transfer with a finite value for the
coefficient «; Iin z = 0 also. Here we will leave oul completely the
detailed procedures of obtaining transcendental transfer functions and
only show their approximations.

c) Finite coefficients of heat transfer «; and «,
In this case of convective heat transfer with finite transfer coefficients

in 2z = 0 () and z = § (). the boundary conditions become equal to
those given in c¢) of Example 1.

0 o
Ist BC %ﬂ - S (a0, ) - (M) . 2 =0
2nd BC ai(_z.;g__ = - —°‘f—(s(s. t) - 8,(t)) , z =38

8,(1) and 9,(t) are now the temperatures of the media flowing on the
outside and the inside of the wall where 98, » 9..
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The approximated transfer functions in Equation (3.2-62) show how heat

flow rate g,(t), transferred onto the heated fluid, depends
changes of both the heating and the heated fluid.

K(Tps + 1)

02(5) = T—SETG1(S) - Tos + 1 92(5)
- —_—
Gsals) Ggals)
s

K =

A

3
0y + oy + (!1(!27

1 3
Ty = CpS(;‘— + 2—1—)

52

8
1+ (o + az)‘ﬁ + «jop ox2

Th = cod

3
oy + xp + (!1(!2—)"

on temperature

(3.2-62)

(3.2-63)

(3.2-64)

(3.2-65)

In the above equations we have assumed that the surface areas
through which heat is transferred are the same on the outer and on the
inner side of the wall, i.e. we worked with a mean surface area A = A, =

A,
q, §
1',b. -]
n 2000
w
d
Kp=10628 -~~~ = e D e m e e — - T TR
1000 1 | <
%
b
a
Ki=58 244 ~~———~—p—— oo o e e e e o —
Ta2=45 10 20s t
T1=8.98

Fig. 3.2-8 Heat flow rate change q,(t} in the case of:

- step temperature increase 8,{1) - ac
- step temperature decrease $,(1) - b,d

The transfer funclions Ggu(s) and Gga(s) show that q.(t) will respond as
a proportional first-order system to a disturtbance on the heating side (a
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distutbance that passes through the pipe wall). To temperature
disturtbances of the heated medium it will conlinue to show derivative
properties, only now q,(t) will no longer converge to zero after a
disturbance of 8,(1). This property fundamentally distinguishes this transient
process from the response in the preceding two cases when there was a
forced heat flow rate q,{t) in z = 0, when q,(t) was not a function of the
wall temperature 9(0, t), i.e. when there was no feedback aclion of the
temperature of the heated medium 8,(t) on the amount of heat brought to
the pipe wall (and through it to the heated fluid).

The transfer function Gg,(s} has qualitatively different transfer propetties
so we will show its responses in this case when the cosfficients of heat
transfer on both sides of the pipe are l{inite. For steam generator
superheater pipes whose data have alieady been given in the section on
lumped parameters, Figure 3.2-8 shows the 1esponses obtained on the
basis of Equation (3.2-62) in the case of unit step temperature increase
9,(1) (curve a) and decrease 9,(1) (curve b).

The following data are valid for the metal wall:

c = 500 J/kgK. ¢ = 7850 kg/m3, 5 = 0.005 m, A = 465 W/mK, «, = 60
W/m?K, «; =2400 W/m?K, A = 1 m? .

The coefficients characterizing the transfer process are K = 58.1704
W/K, Tp = 328138 s, T, = 8.98 s.

It is obvious that heat flow rate qp{t) increases much more for a
decrease in 9, which is the consequence of using up heat that was
stored {accumulated) in the pipe wall. When $8; increases not only is no
stored heat released from the wall, bul the greater heat flow is used to
increase the energy level of the wall itself, which results in a much
smaller growth of qu(t). Nevertheless, this difference in the value of qj(1)
tesults from the much greater heat resistance in the cross-section z = 0 («
is about 40 times smaller than «;). Thus, Figure 3.2-8 also shows the
transfer processeé if the coefficient «, is much greater than above and
equal 10 «p, «; = a, = 2400 W/m®K. Then K = 10628 W/K, Tp = 9.232 s, and
Tp = 4.6 s. Curve ¢ conresponds to temperature increase 1), curve d 1o
temperature decrease 9,(1).

To end this part we must still show that the analysis in Section 23
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gave time constanis that are boundary cases of Equations (3.2-63), (3.2-64)
and (3.2-65) for an infinite ). If these time constants are compared it can
be seen that the differences are not very great. However, it must be
tepeated that if the coefficients of heal transfer «; and «, are large, which
means that the convective part of the heat resistance is small, then the
part of the resistance resulting from heat conduction thiough the wall
makes up a large part of the total time constant T and thus Equations
(2.3-10), (2.3-1) and (2.3-12) are not satisfactory,

In all the previous examples we used the basic {orm of the parabolic
PDE shown by Equation (3.2-1) to analyze the dynamic properties of
processes with equalization, and any differences and difficulties we
encountered in solving it resulted from the necessily of satisfying different
conditions of heat transfer on the boundaries of the system under
observation. The preceding pages show the complexity of the
mathematical tools and the necessity of turning to simpler forms of transfer
functions. All the solutions that we obtained here were solutions of the
simplest forms of parabolic PDE, but it is several times more difficult to get
solutions analytically if the process occurs in a body with a more
complicated geometry, or if a more "extended" form of Equation (3.2-1)
describes the process. In such cases a digital computer and numerical
methods of solution must be used. The {ollowing two examples will show
how a very small change in assumptions (whose existence and help are
crucial when the eduations are formulated) results in a different (more
complex) mathematical form of the basic parabolic PDE (3.2-1).

Example 4 Heat conduction through homogenecus uninsulated body

Derive an equation describing unsteady temperature changes for the
body on Figure 3.2-1 if all its side surfaces exchange heat with an
environment of temperature $(t). Resistance tc heat conduction in a
cross-section is neglected and the model is formulated for the case when
the surrounding temperature is greater than the temperature of the body.

If the circumference of the body is U and if « is the coefficient of heat
transfer on the side-surface boundary of the body. the left-hand side of
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the equation for the conservation of energy (3.2-2) is expanded by terms
containing the amount of heat brought to volume dV through the side
surfaces

alz. VA - [q(z. 1) + "q(z 39z 9 414 - oU[s(z. 1) - 86(0)]dz =

- Apc‘ls%id (3.2-66)
Arranging this upper equation gives the final PDE
a8(z, 1) o%(z, 1) U oU

m oo a2t Acps(z, t) = Acpso(t) . (3.2-67)

If the coefficient « can be considered independent of temperature, a
nonhomogeneous linear parabelic PDE is obtained. The boundary and
initial conditions defined for Example | are completely valid for Equation
(3.2-67) also, but to get a unique solution of the equation it is necessary
to know the law of temperature change 8,(1) in the environment as well.

Example 8 Process of diffusion with convection

Consider a pipe of cross-sectional area A through which a solution
flows with velocity w. The solution contains a C component with varying
concentration ¢ along the pipe. Derive an equation describing dynamic
changes along the pipe in the concentration of component C.
Concentration ¢ is considered constant on the cross-sectional area and
Fick's law is valid for diffuse flow.

z+dz

Fig. 3.2.9 Diffusion with convection

Figure 3.2-9 shows an elementary pipe volume dV for which the
ecquation for mass conservation of the C component in the solution is to be
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derived. The following notations have been used: n .. C component molar
flow transported by the flow of the solution (convective molar flow), n =
cAw mol C/s, ¢ .. concentration of C component mol C/m3, N ... amount of
C component. N = ¢V mol C, nq4 .. diffuse molar flow (results from
concentration difference along z). ng = -DA 8c/az mol C/s (Fick's law), D
... coefficient of diffusion m?#/s.

[n@z. ) ¢ ng(z. ] - [n(z. 1) + ngz, 1) + nz. 1) + ny(z. 0] dz = a—::——

oz
(3.2-68)
ofn(z, 1) + nyg(z, 1)] ez, 1)dV)  ac(z. t)
- 2 dz = m el Adz (3.2-69)
ac(z, t)
ac(z. t) a['DA 3z ] ac(z, 1)
3z Aw - 32 = i A (3.2-70)

Rearrangement of the last equation for a constant coefficient of
diffusion D, which means it is not a function of c, yields

ac(z, 1) R wac(z. 1) D o%(z. 1) ;

= - — o . (3.2-71)

This is a linear homogeneous parabolic PDE. Compared to the basic
equation for processes with equalization (3.2-1), it is expanded by the
second term on the left-hand side which contains the so-called convective
part of the transport of component C along the z axis, the part that is
carried with the solution flow by velocity w.

These last two examples complete the presentation of some basic
characteristics of processes with equalization. The following section treats
periodic processes whose basic mathematical notation (for processes with
distributed parameters) is a second-order hyperbolic PDE. The major
diffetence characterizing the dynamics of earlier processes in comparison
with these processes is that the poles of the transfer functions will now be
complex conjugate pairs. This distribution of poles is the result of
properties of inertia possessed by continua, which appear in the
momentum equation when the conservation equations are formulated. Such
properties are not shown in processes with equalization so there was no
need to formulate the equation for the conservation of momentum for them.
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3.3 PROCESSES WITH PERIODIC STATE CHANGES
BASIC SECOND-ORDER
HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION

Oscillations (vibrations) in parts of devices and plants are an everyday
occurtence in technical praclice and many different processes
demonstrate these periodic dynamic properties. Vibrations of rods, beams,
shafts, shells and water masses in hydro-electric power plant feeding
pipes, water hammer effects in hydraulic and pneumatic pipes, oscillations
of water level in connected tanks, oscillations in electrical circuits,
torsional oscillations and so on are all examples of dynamically the same
or similar phenomena whose state variables are related by the same type
of differential equation. f processes whose parameters change along the
spatial axis are analyzed, then the basic and simplest form of equation
describing periodic state changes will be the following second-order
hyperbolic PDE.

a%u 2 3%
<7 =t - (3.3-1)

Equation (3.3-1) was derived after making many assumptions that
excluded phenomena unimportant for the purposes of this analysis, and it
is valid for different processes in which the variables u and a have the
foilowing physical meaning:

longitudinal oscillation of a beam

u .. displacement of cross-section
a .. velocity of distutbance propagation along the
beam, a = YE/p
E .. modulus of elasticity (Young’s modulus)
¢ .. density
hydraulic shocks in pipe
u .. pressure, flow, velocity., density
a .. speed of sound (speed of disturbance

propagation)
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oscillation in electrical circuits

u .. voltage, current flow
a = yLC. L ... circuit inductance
C .. circuit capacitance

To obtain a unique solution of Equation (3.3-1) it is necessary to know
the initial conditions (IC) and the boundary conditions (BC). whose
mathematical formulation contains data about whether, and how much,
energy, mass or momentum was stored in the process under observation at
the initial moment (IC), and how those variables are exchanged with the
environment through the boundaries (BC). In mathematical form the BC of
the second-order hyperbelic PDE are equal or similar to the BC from the
preceding section for the parabolic PDE. In the case of the IC, since
Equation (3.3-1) now contains the second derivalive of variable u with
respect to time t, besides knowing function u, = u(z. 0) it is also
necessary to know the value of function u's = du(z, 0)/dt. To solve the
above equation it is, therefore, necessary to formulate two initial and two
boundary conditions in accordance with the real conditions under which
the bxocess occurs, Special aitention must be paid to the mathematical
formulation of conditions under which the system communicates with the
environment through its boundaries. In the case of one-dimensional spatial
distribution (and here we will treat such cases) it is always necessary to
define conditions on both the boundaries of the process, z = 0 and z = L.
The problem cannot be solved if both boundary conditions are given on
one boundary because then the way in which the process occurs at the
other end of the system is not known. This is the simplest explanation of
the statement made in the section on fluid flow regarded as a process
with lumpéd parametsts, where it was said that both flow change and
pressure change cannot be simultaneously given as disturtbance variables
at the same end of the pipe.

In this part of the book, where we treat periodic changes of state, most
of cur attention will given to the analysis of dynamic processes that occur
inside pipes for transporting fluid. Oscillations in electromagnetic and
mechanical systems are treated in greal detail in specialized books from
these fields. Nevertheless, although the accent in the {urther lines will be
on hydraulic and pneumatic processes, we will also tiy to indicate the
dynamic characteristics common to all periodic processes independent of
the system in which they occur. Therefore, we will begin with a classical
example of periodic state changes (longitudinal vibration of a beam) and
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use it to show the variely of possible boundary conditions. Later, when we
analyze hydraulic oscillations, the similarity of the dynamic propernties with
this case from mechanics will be seen.

Example 1 Longitudinal vibration of a beam

Figure 3.3-1 shows a prismalic body (beam, bar) which performs
longitudinal vibrations due to the action of a force. Assuming that the
beam is of constant cross-sectional area. homogeneous. that its bending is
neglected and that longitudinal displacements occur within the field of
elastic deformations, derive the model describing that periodic process
and definé boundary conditions if:

a - the left end is fixed, the right end free
b - force F acts on the left end, the right end is fixed
c - the left end is fixed, the right end carnies mass M.

%.___-3?_._,_.%&___.__

i
r
I
I
z+d2 N

" 1 z=L
[ — - G+ gg—dz
u 30§%dz

Fig. 3.3-1 Sketch of longitudinal beam vibration

The equation for the conservation of momentum, in this case more
usual as the equation of force equilibrium, is formulated for an infinitesimal
mass of the beam dM which is at the distance u in the stretiched statle
and has the length (1 + su/az)dz. (In the steady state that same mass is at
the distance z and is of length dz.)

The equation for force equilibrium is
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F) o%u
- oA + (o4 a—:dz)A = pAdz—7- . (3.3-2)

o denotes tlension in the cross-section, of dimension N/m?. The above
equation is reduced to

3o a%u
= 333

In the region of elastic deformations there is

<:=E:e=l:':3}-1
oz

where ¢ denotes the linear deformation, and E the modulus of elasticity
N/m?. The last two equations yield

2 2
297U 3°u _/E i
CTZ'?- Er , € —p . (334)

The above equation has the already-known form of a second-order
hyperbolic’ PDE that describes periodic processes. To solve- it, it is
necessary lo know twe boundary and two initial conditions. Here we will
not enter into how to obtain solutions but will only give the general
form for the solution of the above equation

u(z, t) = (Cysinwt + Cpocoswt) (Casin2z + C,cos—2z) . (3.3-5)
c c

The constants C,, C,, C; and C, are determined from the boundary and
the initial conditions. To conrespond with the conditions demanded at the
beginning of this example, the boundary conditions can be varied:

a) The left end is fixed, the right end free.

In this case there can be no displacement in z = 0, and in z =
L, since that end is free, there can be no tension, so there is

Ist BC u(0. t) = 0

au(L, t) .

2nd BC
0z

0

b) Force F acts on the left end, the right end is fixed.
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In z = 0 a force of tension opposes {force F, and the conditions
of force equilibrium yields

sul0, 1)

Ist BC F = Ac = AE .
P-¥4

2nd BC u(l, t) = 0
¢) The left end is fixed, the right carries mass M.

In this case the inertia of mass M in the cross-section z = L
causes tension alocng the whole cross-sectional area A so the
second BC is obtained from the condition of equilibrium
between the inertia of mass M and the force of tension in the
cross-section

Ist BC u(o, t) =0 ,

3L, 1)

2nd BC M_th_ .- Ao = -AEa“a(:' t)

This ends our presentation of the simplest example of periodic

processes in systems with distributed parameters. Of couise, it is possible
to give many other different boundary conditions, to seek for the natural
frequencies of vibrations or for the solution of Equation (3.3-4) for given
conditions and the like. We will leave this to more specialized textbooks.
Our next example will be one-dimensional fluid flow., where the same or
similar {more complicated, in fact) equations to these in the above lines
will be obtained for the description of periodic processes. It is our desire

to show that different processes have the same dynamic properties, and
also to describe in more detail processes of disturbance propagation
along the fluid streamlines.

Example 2 Dynamic processes in fluid pipes. Equations of mass,
energy and momentum conservation

Consider a pipe of constant cross-sectional area A externally heated

by heat flow of density q J/ms per unit length, through which flows



SR, 3.3 213

m kg/s mass of fluid. The flow is homogeneous with the same velocities
and thermodynamic properties per cross-section. The thermal capacity of
the pipe wall is neglected. Derive the mathematical model describing
unsteady state variable changes of that fluid.

Here also, analogously to the previous process, we will obtain the
mode! by deriving conservation equations for the fluid in a control volume
dV. However, unlike the previous process, hete there will be mass,
momentum and energy storage in the control volume dV at the same time,
so it will be necessary to formulate all three conservation equations. After
they have been amanged, r1educed to a suitable form and the
thermodynamic equations of fluid state referred to, a model in the desired
form will be obtained. As until now, this will be a differential equation. We
must, nevertheless, mention that when problems fiom f{luid dynamics are
analyzed the conservation equatlions are often given in the integral form,
which is not the most suitable form for the purposes of this analysis.
Therefore, such models are not derived in this book. This remark can be
of use in a situation when the reader encounters literature in which the
same laws are described using different mathematical tools.

EQUATION FOR THE CONSERVATION OF MASS

Fig. 3.3-2 Sketch for deriving continuity equation

If there are no sources or sinks of mass in dV, the difference between
the amount of mass that enters dV and the amount that emerges from it in
the time dt equals the change of the mass dM in dV. If m and m+dm show
mass flow rates through cross-sections z and z+dz, then the amount of
mass that enters dV during the time dt equals mdt, and the amount that
emerges is (m+dm)dt. Thus we can write



4 CHAP. 3 DISTRIBUTED PROCESSES

mdt - (m + dm)dt = dM (3.3-6)
In the generally unsieady stale mass flow rate is variable both along
the pipe and in time, i.e. m = m(z, t), so that flow rate change along the 2z

coordinate, at time t, can be written

dm = —dz . (3.3-1)

om _dM _ d(Apdz) _ de
-z - G- S L a0 (3.3-8)
dp om - -
Atz ~ 0 - (3.3-9)

Equation (3.3-9) is the law for the conservation of mass. However, as
the same law is encountered in various forms in literature., it is
advantageous o present those various forms of the continuity equation
here alsc. I must be remembered that mass flow rate m is

m= Awp . (3.3-10)

and for p = I/v from (3.3-9). the following forms of the continuity
equation can be obtained

op op o W R
YA I ey (33-1)
v ov ow

w VT Ve (3312
om om oW m dw

Ve A W (3513

The last three expressions contain a derivative that is characteristic of
fluid flow processes. It is called the material or substantial derivative and
denoted D/dt

Df af af

@V (3.3-14)
The material or substantial derivative D/dt will appear in all

conservation equations that desciibe state changes of flowing fluid. The

name itself comes from the fact that every change depends both on the
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local gradient of change /4, and on the so-called convective
gradient of change, which depends on the velocity of “"material
(substance)” flow wa/az.

Using (3.3-14), we can write

Do ow Dv __ow Dm m Jw

dt 3z oat s Yzt @ w oz

In steady state, in which there must be ¢/¢t = 0, Equations (3.3-9) -
(3.3-13) yield the following equalities

mz a azq,dz = E . (3-3"5)

oW = const. . (3.3-16)

For incompressible fluids (sometimes liquids can be considered
incompressible) p = const., and (3.3-16) yields

Wz = Wyadz = W = const. . (3.3-17)

EQUATION FOR THE CONSERVATION OF MOMENTUM

Fig. 3.3-3 Sketch for deriving momentum equation

The law for the conservation of momentum says that the sum of all
forces acling on the mass of fluid dM in the direction of flow (the
direction of the z axis) equal the change of momentum (dMw) of the
particle dM in time dt.
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Mathematically

= dM—— (3.3-18)

4
d(dMw) dw
2, Fi dt dt

il

It must be observed that, unlike preceding case when the balance of
mass was formulated for an elementary and unchangeable control volume
dV. here the balance of momentum is formulated for an elementary and
unchangeable control mass dM (which is in dV at the moment t). The fact
that the equation of equilibrium is formed for an unchangeable (i.e.
constant and independent of both z and 1) particle of mass dM makes it
possible to place the symbol dM in front of the operator of total
differentiation d/dt in Equation (3.3-18).

The following foices act in the direction of the z axis:

pressure force in the cross-section z: F, = PA ,

2(PA)
3z

pressure force in the cross-section z+dz: F, = PA + dz ,

component of gravitational force in the z direction:

Fi = Gcosa = dMg%:— =

oh
= Adzag—a—z— .

friction force of fluid against the pipe wall: Fy = F = fAdz .

In the above equations g is the gravitational acceleration and { the
coefficient of friction, i.e. it represents the pressure drop due to f{riction
APfF per unit length of pipe. of the dimension Pa/m. Since force and
momentum are vectors, their directions are important and if the increasing
z direction is given with the + sign, (3.3-18) becomes

d
F,-F,-Fy-F, = Apdz—&vti

or

ce— s pg— - = p(— + w—) . (3.3-19)

The total change dw is
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ow ow ow  ow dz

dw = Bi—_dl + Fdz = (? + —;z—-’c'ﬁ')dl (3.3-20)
I fluid flows at velocity w. in period of time dt its parlicle dM will
move along path dz = wdt, so quotient dz/dt is flow velocity w. This
means that the expression in brackets in the above equation can be
written in the form of material derivative Dw/dt and Equation (3.3-19),

referring to (3.3-20), after rearrangement becomes

Dw aP ah

pa'_ + ?z_. + gp—a-—z- + { = Q (3.3'2”
[ E— [ )
APg AP

APg ... gravitational pressure change per unit length Pa/m
APg .. frictional pressure change (drop) per unit length Pa/m
The equation for the conservalion of momentum can also be shown in

different forms, which will be used in further derivations. Multiplying
(3.3-21) by Aw vyields

oW oW aP
m(T W ) + AWAPGg = - Aw:)z— - AwAPF . (3.3-22)

Substituting w = mv/A for w in Equation (3.3-21) and referring to the
continuitly equation yields the form of momentum equation that includes
the gradient of mass flow rate m with respect to time

I om 1 o(mP) 0P

-A——aT + K? 32 - TZ_ - APG - APF . (3.3-23)

Finally, to analyze pressure change along the streamline of fluid the
following form of the equation for momentum conservation is useful

1 a(mv? O 3P
—A—v?—(%) N ﬂA,?;f = - 2L . APg - APF . (3.3-24)

az
Equations (3.3-21) - (3.3-24) are only diiferent forms of the well-known
Navier-Stokes equation for the one-dimensional flow of real fluid, in which
the dynamic coefficient of viscosity u differs from zero, i.e. in which
friction is not neglected. The most similar in form to the Navier-Stokes
aquation is Equation (3.3-21), which becomes identical to it if it is divided
by density o,
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P Dw

—
o

-——=F —— - Z . 33-25
e oz %' Ta ( )
F, = —:)— . [riction force per unit mass in the direction of the z axis
Dw . . .
ar .. complete (material) gradient of velocity w change along
the 2z axis
ah A . : . X
Z=-g 3z gravitation force per unit mass in the direction of the
Zz axis

For ideal fluids (to which 1eal gases and vapors with small coefficients
of viscosity y and high flow velocities come close) u = 0 and Equation
(3.3-25) becomes the well-known Euler equation for ideal fluid

I aP Dw

--—;—E‘ + Z = "a‘ (3.3'26)

The extended Bernoulli's equation for the unsieady flow of viscous
(real) liquid (4 = 0. ¢ = const) is also easy to derive from Equation
(3.3-25). If the whole equation is multiplied by dz, after integration with
respect to z from cross-section 1 to cross-section 2, we get

Pg hz Wo . Zo 22
1 w AW APf B
5 Jdp + gibh OJd( 7 )+ _[—asz + o I&Z =0
1 \ Wy Zy z,
2 ?
1 w Wl 2w AP
_p'(Pz - P) + glhz - hy) + (-él- —ZL) +J;rd2 + pF(Za- z) =0
Z,

(3.3-21)

In the flow of an incompressible liquid the gradient sw/at is not a
function of z (A = const) and equals dw/dt, so the integral in the last
equation is

dw dw

arze -2 - gk

Rearrangement yields the well-known form of Bernoulli's equation for
real liquid in unsteady conditions
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W|2 P

——+gh,+——=—"’-+gh2+
e e

wot  dw,  aPf, (3.3-28)
]

3 talt

Multiplying the above equation by ¢, and for w = m/Ap. we get

2 oy 2
(P, - P2) - aPeL + oglh, - hy) » M- Y2, o %%‘:-‘- . (3.3-29)
3Pc 5Pg

In the horizontal pipe of constant cross-section the last two terms on
the left-hand side of the last equation are lost and it becomes equal to
Equation (2.2-1.4) from the chapter on lumped parameters.

EQUATION FOR THE CONSERVATION OF ENERGY

Fig. 3.3-4 Sketch for deriving energy equation

The law for the conservation of energy (thermal and mechanical)
expresses the fact that the differtence between the amounts of energy
brought to and led from the fluid particle dM, in the elementary volume
dV during time dt, equals the change of the total amount of energy dE
contained in dV

ejdt - epdt = dE (3.3-30)

A kilogram of flowing fluid mass possesses three forms of energy:
internal thermal energy u. kinetic energy w?/2 and mechanical potential
energy gh. Therefore, the energy flow rate brought through cross-;ection z
into dV is e, = m{u+w?/2+gh) J/s. The power necessary to inject the mass
of fluid m, under pressure P, into section z is e;, = PAw ]/s. As the fluid
flows out of cross-section z+dz it lakes with it a total energy flow rate of
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e,+de; |/s, and to eject fluid out of the same cross-section the power
PAw+d(PAw) is needed. Finally, a heal flow rate gqdz J/s is brought into dvV
from the ouiside through the pipe wall. What has just been said can be
given the following mathematical form

2

ej = ey + QO =mlu + —VZL- + gh) + PAw + qdz , (3.3-31)
€z1 €z2
3 w?
e, = 8, + de, = @, + E(m(u ot gh) + PAw)dz , (3.3-32)
w2 w?
dE = dM(u + 7t gh) = Ap(u + + gh)ldz . (3.3-33)

Substituting the last three equations into (3.3-30) and dividing by dz
vields

2 2
q - c%(m(u R + gh) + PAw) = Sal—(Ap(u . + gh)) . (3.3-34)
Referring to (3.3-10) there is Aw = mv. so
mu + PAw = m{u + Pv) = mi . (3.3-35)

The term pu on the right-hand side can be written
pu = oi - P . (3.3-36)

Substituting (3.3-35) and (3.3-36) into (3.3-34) and differentiating yields

am , w? a1 W ah

a- G i egm o) -mi e wom e g -

= A__a"(i + ___w? + gh) + Ap(i + wfﬂ.) - Aip._ (3.3-37)
at 2 ot ot ot

Referring to continuity equation (3.3-9), the terms -ism/az and iAap/at
cancel out, so Equation (3.3-37). with reference 1o (3.3-10), can be
rearranged into this final form

ai P ai oW ow
q = Ap—a—t- - A_at— + mE + !‘l.'l(a—t + Wa—z-) + AWAPG . (33-38)
The last term of this equation was obtained, using notation from

Equation (3.3-21). in the following manner
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mgz—: = Ang%—g = AwWAPg . (3.3-39)

Equation (3.3-38) represents one of the possible forms of the law for
energy conservation. As in the preceding examples, it is advantageous to
show this law in different, more suitable, forms. One of them is obtained
using the balance of momentum. It can be shown that the last two terms
on the right-hand side of Equation (3.3-38) equal the left-hand side of
Equation (3.3-22), so substituting the right-hand side of Equation (3.3-22)
into (3.3-38) yields

aP ]

ai ai P
(d_t— + Wa?) - V(T‘l_ + WE) = Ao (q + AWAPF) . (33-40)
LB 4 ] (3.3-41)

dar " Var T v Egs

The total heat flow rate brought to one kilogram of fluid mass is
denoted q. and it equals the sum of heal flow rate brought from the
outside through the pipe wall q/Ap and the heat flow rate 1eleased by
friction wAPg/p.

Equation (3.3-36) yields i = u + vP, so the energy conservation Equation
(3.3-41) becomes

%:i . p%_:’. .qy . (3.3-42)

Multiplying (3.3-42) by dt yields confirmation of the first main law of
thermodynamics, according to which the total heat introduced, dO = q,dt.
is spent on an increase of the f{luid’s thermal energy and on mechanical
work

)

dQ = Du + PDv X (3.3-43)

According to Equation (3.3-14), the total change Di(z. t) equals

of of
Df(z, 1) = (y + wE)dt . (3.3-44)

It is clear that the law for energy conservation should satisfy the
second main law of thermodynamics as well, whose generally-known form
for the elementary fluid parnticle is
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ds = %—(di - vdP) | (3.3-45)

In this case of spatial distribution for fluid flow the law given by
Equation (3.3-45) remains the same, the only differtence being that a
material, substantial increase D is used instead of change d. Therefore

Ds I, Di DP

ar 7 (q V—a) . (3.3-46)

Now the expression on the left-hand side of Equation (3.3-40}), or
(3.3-41), is replaced by Ds/dt, so the law for energy conservation,
expressed through entiopy change, becomes

LW —’II‘_(Tl\—(;q » Lape) (3.3-47)

The equations for mass, energy and momentum conservation that we
derived are not sufficient to oblain a solution in the case of unsteady
fluid flow. They conlain four unknown variables that change in time and
in space (mass {low rate m, specific volume v, pressure P and enthalpy
and/or entropy s) so the three equations obtained are not enough for a
solution. That system of equations must be completed by the
thermodynamic equation of state that relates any state equation with twe
others. Which form that equation will take (whether v = v(P, s}, p = (P, i), i
= i(Ps). i = i(P, v) or s = s(P, i), s = s(P. v) and so on) depends on which
variables from the conservation equatidns are selected for direct numerical
calculation (integration). Thus, for example, numerical integration or
solving the system of equations is possible: after expressing ap/at, am/at
and . s/at from Equations (3.3-9), (3.3-23) and (3.3-47T). After discretization
with respect to the spatial variable, and knowing the initial state, the first
step of integration yields new values for ¢, m and s. However, before the
second step of integration can be undertaken, new values for v, T and P
must also be known, because those variables are in the system of
equations being integrated. While v is given directly by v = 1/p, P and t
must be determined from state equations P = P(p, s) and T = T(p, s). Only
after these variables have been found is it possible to begin the second
step of integration.

In practice, since m. 8 and P are standard control variables, we
usually fty to get a system from the equations for conservation that
contains differentiation with respect to time of mass flow rate, temperature
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(i.e. enthalpy or entropy) and pressure. For the needs of further dynamic
analysis, the following model contains derivatlives with respect to time of
flow rate, entropy and pressure. Thus it is necessary to obtain

, in an
analytic and differentiable form the state equation

v = v(P, s) (3.3-48)
The upper equation easily yields aP/at. From
ov av  oP oV oS
o P ot e o (3.3-49)

[—— [ S——)

Ya 7B

whence
oP 1 ,av 3s
ERE7S R (3.3-50)

Ya and Tg are derived from Equation (3.3-48) and in the general case
they also are analytic functions of pressure and entropy.

TA = (%i,v—)s = YaA(P. s) (3.3-51)
Y8 = (5)p = Ya(P. 5) (3.3-52)
(The

variable T4 is related to the velocity of sound in fluid Ta=-v3/c?)

Finally the model sought for is obtained from Equations (3.3-23), (3.3-47)

and (3.3-50) with the help of the continuily equation., and it comprises a
system of three first-order hyperbolic PDE.

am A 3P 2mv am m? av

A 2T K ez T A ez - A(4Pa s oPR) (33-83)
L ] m as mv
7— = V(T.I'."q - r-é-;— + -A—TAPF) . (3.3-54)
P v? om l m as
-l xoz VAT T 7 2P (3.3-55)
T %5
at at

These three equations must necessarily be accompanied by the
thermodynamic state equations (3.3-48), (3.3-51) and (3.3-52). Unlike in the
preceding section where the derived models were in most cases linear
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after certain assumptions had been made, the model shown by the above
system is nonlinear. This nonlinearity is not reflected only by the fact that
it contains the squares m? and v® but also by the products of variables,
for example mvam/éz and so on.

The selection of variables m, s and P is only one possible selection.
Here it was made because we wanied to analyze the eigenvalues of the
process of distutbance propagation thiough the fluid. Thanks to the f{act
that the energy equation is expressed by entropy changse, it is possible to
separate the hydrodynamic (fast, and thus considered adiabatic)
propagation of disturbances in pressure and flow rate from the slower
transport propagation of disturbances in the thermal state of the fluid.

The following must also be said concerning the system of equalions
(3.3-53) - (3.3-55), which we have called a model. It describes momentum,
energy and mass transfer (i.e. changes of mass flow rate, entropy and
pressute) in an arbittary fluid and does not include any special limitations
{except the assumplions made at the beginning) concerning the specific
properties of the processes themselves, the charactesistics of the object in
which they occur or the conditions under which they occur. Therefore, this
system of equations can be used for any arbitrary, one-dimensional flow
and heat pirocess (iransport of water and other liquids, gaspipes,
evaporators and steam generator superheaters, pneumatic pipes and so
on).

All technical processes occur in systems with specific geometrical
characteristics, in various devices, apparatus and plants whase size limits
the domain of change of the spatial coordinate in differential transfer
equations. The physical characteristics of the operating medium are also
factors of limitation in the given system of equations. Besides these
limitations, to solve the problem comnectly it is also necessary to know how
the system interacts with the environment at its boundary (boundary
conditions) and the states of the process variables at the moment we
consider the beginning of calculation (initial conditions). The geometric
and physical characteristics of the system, together with the
boundary and the initial conditions, are a set that separetes
the observed specific process from the whole class of
processes to which we can apply the system of equations
(3.3-53) - (3.3-55) .
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Therefore, the mathematical model of a process under observation
comprises a system of differential equations together with the geometric
and physical characteristics. This is important 1o stress because in this
book a certain mathematical record is often called the model of a process,
and the mentioned additional conditions are not specially indicated. In
such cases it is taken for granted that all those conditions are defined
and known.

The model presented in the preceding example does not bear any
resemblance to the hyperbolic PDE (3.3-1), nor does it contain second
derivatives with respect to time and space. It is, however, a connected
system of first-order hyperbolic PDE and with the help of certain
rmathematical transformations a second-order PDE in m or P can be
obtained, which will be a more expanded form of the already shown
simplest type in Equation (3.3-1). Since the mathematical apparatus that has
been developed makes it much simpler to analyze a linear modsel, in the
following example we will linearize the model (3.3-53) - (3.3-55) to obtain
a linear second-order hyperbolic PDE for mass flow rate m. This linear
model will be used 1o analyze the dynamic properties of disturtbance
propagation along pipes for {luid transport. Analogously to the preceding
section where this was done for processes with equalization, it will be
shown that the models from the sectlion on lumped parameters are just
rteduced forms of the models shown here. We may also repeat that the
linear model obtained reproduces faithfully all the essential dynamic
properties of the real nonlinear process on condition that deviations from
the steady state observed are small.

Example 3 Analysis of dynamic properties. Steady state. Linear model

For the process of one-dimensional fluid flow through a pipe of length
L whose unsteady state changes are shown by the nonlinear model
(3.3-83) - (3.3-85), determine the steady state and then:

a) derive a linear model for deviation from the steady state observed,

b) using the linear model obtained, analyze dynamic properties for:
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1 - in the initial steady state the fluid is at rest and is not heated (m =
0. g= 0),

2 - the fluid flows through the pipe adiabatically (g= Q),

3 - the {luid {lows through the pipe and is heated by a heat flow rate
of constant density g along the pipe.

The following boundary conditions are given:

Ist BC .. mass flow rate is given at the input cross-section m(z=0t)=
m(t)

2nd BC ... pressure is given at the oulput cross-section P(z=L.t)= P((t)

3id BC ... fluid with entropy s, is supplied at the inpul cross-section,
s(z=01) = s,(1)

The cross-section A of the pipe is constant. All the variables are
uniform in a cross-section. Pressute drops due to friction and gravitation
are neglected, APF = APg = O.

STEADY STATE CALCULATION

The equation of continuity yields

am
—5— = 0 . (33-56)

After setting the terms om/ot, APg and APf equal to zero, Equation
(3.3-53) yields

m? ov oP

Equation (3.3-54) yields

5; = mq. . (3.3-58)

The last three equations, with a given heat rate gand boundary
conditions that are constant in the steady state m,. Pf, so. yisld
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m(z) = my, = const. (3.3-59)
ms ,— —
P(z) = B + —x-‘?- vL - v(2) . (3.3-60)

The further derivation of analytical expressions is coupled with
difficulties because thermodynamic stlate variables are interrelated and
without a knowledge of their 1elations in analytical form solutions cannot
be 1eached excepl in special cases. Thus, for example, to determine the
distribution of s along z, ie. to find s(z), demands the integration of
(3.3-58) with respect to z. However, (3.3-58) has temperature T in the
denominator, which is also a function of z, T(z2).

One of the special cases where analytical expressions for all the state
variables in the steady state can be obtained is the case when
fluid . flows through the pipe and evaporates, which makes it
possible 1o assume that temperature is a function of the pressure of
evaporation only, T = T(F). We will now show how to detlermine the steady
state for the case of the evaporator.

Before deriving the other analytical expressions we must point out that
the second term on the right-hand side of Equation (3.3-60) is as a rule,
very, vety small (less than 0.01% P{) and can be neglected. If this is so,
then F(z) = P, or

3P o (3.3-61)

oz

Beside constant pressure, temperature is alsc constant along the
evaporator, T(z) = const. Now Equation (3.3-58) can be integrated, which
vields

5(2) = 5 + E‘;.raz . (3.3-62)

To determine v(z) and w(z), it is useful to have i(z). Referring to
(3.3-61), Equation (3.3-43) yields

(2) = 1o + %z. io = i(50) . (3.3-63)

In the evaporation process we have
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Vnn = Vn _ V: = vcu(p)
oz 32 I r=1"-1=1b (3.:3-64)
The given equation yields
@) = .. 0 A )
v(z) = vg + - moz . {3.3-65)
Finally, referring to Equation (3.3-10), it follows that
— — VII! ~
W(z) = wo + ?—-i‘—z . (3.3-66)

Therefore, in the evaporator pipe it is possible (with the assumption
B(z) = const) to obtain analytical expressions for all process variables in
the steady stale. A characteristics of the evaporator is that those variables
(except for flow rate, pressure and temperature which are constant)
c'hange linearly along z.

In all other cases, when it is not possible simply to determine the
analytical expressions for variables in the steady state, this must be done
with the help of a computer and using iteration.

Only then. after obtaining a specific steady operating state, can
coefficients in the linearized equations be calculated.

a) MODEL LINEARIZATION

The process of obtaining a linear model from the initial system of
equations (3.3-53) - (3.3-85) is based on the assumption that variables P, s,
v, m. T and g remain in the neighborhocod of steady state B, 5, v, m. T.
and q about which they can be expanded into a Taylor series in which
higher-order terms atre neglected. (The procedure of linearization is shown
in more detail in the Appendix.) Here we will show the linearization of
Equation (3.3-53), and for the other equations only the final linear
expressions will be given. With APg = APf = 0, Equation (3.3-83) becomes

am 3P m?av  2mv om

ALY L LL L A

ot az A az A oz (3.3-07)

The gradient sm/st depends on the other variables as follows

am 3P oV am
a5 09 (:)-z_ m, =z v, ";) . (3.3-68)
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Differentiating (3.3-67) with respect io the functions on which m
depends (that functional dependence is given by the last equation) and
1eplacing d with 4 yields

dAm AP m? aAv  ,2m oV 2V em

)
R Y W Y R W L (3.3-69)
2@ oW, 2@V _oam
A oz A o2

To obtain the linearized left-hand side we made use of the following
properly. for small deviations, of the operaior of differentiation
om,  o(dm)

d(T)t_) Y

(3.3-70)
Referring to (3.3-56) yields the final, linear equation for the gradient of

small deviation of flow rate Am with respect to time t
sam _ ,9AP  mfeAv  2m oV 2mv_3Am

at AT T E Tz T R 22 TR

(3.3-71)

Linearization of the other two equations of the model and of the
equation of continuity yields

AAS v Vv 3As VvV s v -

v o—- -
ot T AT TR o T Kz AT AdteAP - prdtsas
(3.3-72)
aAP 1 ,8Av - aas
_at— = 1_7;-(——3—{—— - B at ) . (3.3‘73)
3av  viaam
M - A oz (3.3-74)

The above equations represent the linear model demanded. To obtain
the last two terms in Equation (3.3-72) it is necessary 1o have the state
equation T = T(P.s), from which follows

aT aT

———— —
fp 1s

We must, nevertheless. say that the influence of those last two lerms in
(3.3-72) is small because their denominators have the very large value T2

The model obtained is a linear system of thiee first-order, hyperbolic,
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constant coefficient PDE with respect to time. For further needs the
following notation must be introduced for those coefficients

m? 2m oV V. —
K| = A, Kg = T. Kg = -—A—-F, K4 = 2w
V2 v - v a5

v mv

i K X W Ke= g

~ . 7 (3.3-76)
V —--

Kg = ppzdrp Ko = A Ky = 7‘2—- Ky = KsKyo

V —-
Kis = qredrs

In the general case of flow and heating of an arbitrary f{luid, all the
coefficients except K, and K, are functions of the spatial variable

Ki=1fi(2) i=313 . (3.3-17)

The above expressions for the coefficients K; show that they are
functions of the operating state in which linearization was performed, that
they change depending on it, and since the coeflicients of any particular
partial derivative determine the dynamic properties of the process itself,
those dynamic properties will also depend on the operating state, i.e. on
the conditions under which the process occurs.

b) ANALYSIS OF DYNAMIC PROPERTIES

As part of the analysis of dynamics we will show here the transfer
functions for mass flow 1ate (the expressions AM(z, s)/aAMy(s) and
aM(z,s)/aPL(s)) and examine their poles and zeros, which together with
the gain coefficients determine the transient process. That end can be
reached in various ways, but here we will transform the initial model into
a second-order hyperbolic PDE for mass flow rate (or pressure) and retain
the first-order hyperbolic PDE for the transfer of enliopy disturbances.

Before we begin work on obtaining transfer functions we must say that
model (3.3-71) - (3.3-73) represents the propagation of small disturbances
am, as and AP along the streamlines of flow. Earlier, in systems with
lumped parameters, it was shown that small disturbances of flow and
pressure propagate through the fluid with the velocity of sound (the
waves of compiession and expansion have that velocity), while changes
in thermal state (propagation of the disturbance As) occur convectively
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{carried by the velocity of fluid flow). These are. therefore, dynamically
iwo different processes: a fast process (for am and AP) and the
propagation of entropy disturtbances. It is known that pressure and flow
disturbances propagate in adiabatic conditions (As = 0). The velocity of
propagation is such that there is no time for heat to be exchanged with
the environment in any part of the fluid during the time it takes for the
distutbance to pass. Thanks to this, the analysis can be divided into
investigations into the dynamics of fast and of slow processes. and
Equations (3.3-Tl}) and (3.3-73), which contain aAs = 0, can be analyzed
separately from Equation (3.3-72). This is what we have done, but since
this section is concerned with periodic processes, the analysis of the
first-order hyperbolic PDE for changes of As will in most cases be left out.

If we differentiate Equation (3.3-Tl) with respect to t and replace the
expression afav/atez in it with the equivalent value obtained from (3.3-74)
after differentiation with respect to z, a second-order PDE is obtained for
am(z, 1) which contains the partial derivative a%AP/st3z. Substituting
(3.3-74) into (3.3-73) and differentiating (3.3-73) with respect to z yields
that derivative, whose substitution yields the final expression describing
changes in deviations Am(z, 1)

a2Am aam a?Am
i + K3 a + (KKs + K1K5K10)—?— +

i o (3.3-78)
> m
BT K = O

:} aK
2 K

+ (K2

It will be easier to understand this PDE if the physical meaning of the
coefficients is given beside the partial derivatives. In the general case, all
those coefficients are functions of the spatial coordinate and the equalities
(3.3-76) yield

Kz = K3(2), KzKs = wi(z), K, = 2w(2) (3.3-79)
vl —~p, P -
K|K5K|0 - A"A—'-f: = VZ(W)S = -C2

w is the fluid flow velocity and ¢ the velocity of sound in steady state.
If we introduce the notation

2
f1(2) = K2K5 + K|K5K|o = W?(z) = 62(2) [_122']

-]
fg(Z) = Kg?Kz'i

2K
s K [F] (3.3-80)
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G(2) = K¢ = 2W2) [

Equation (3.3-78) becomes

afam 3Am
t

2
aAm a%Am
V4
sz ¢ K= oz

2%am

+ f|(2)‘—a—z'2— + 1(2) + 15(2) ow - 0 (3.3-8])

We have obtained a second-order hypeibolic PDE that resembles the
basic and simplest Equation (3.3-]) from the beginning of this section and
thus points to periodic changes of mass {low rate. Here we have left oul
the derivation of the general PDE for piessure change. It is not difficult to
prove that the dynamic coeificients, equations, transfer functions, their
poles and zeros and so on for pressure changes are equal to those for

flow changes, which will be shown for the simplest cases.
bl) Fluid at rest without heating
This is a special case and the simplest, when the medium is at rest in

a pipe of length L (m = 0, w = 0) and there is no heating along the pipe
(g= 0), so that (3.3-76) yields

(3.3-82)

Thus Equation (3.3-8]) obtains the form of the classical wave equation

o’Am -, 9%Am
at? - Q azz = O . (3.3"83)

Further mathematical procedure is identical to methods that were used
in the preceding section for processes with equalization, and is reduced
to the fact that after Laplace transformation of the initial PDE we get an
ODE for aM(z. s} with respect to z in the s-domain, whose solution is a
sum of exponential functions beside which are ccefficients that are
functions of the boundary conditions. On the boundaries 2 = 0 and 2z = L
these conditions are

Ist BC, z = 0, am(0, t) = amg(t) . (3.3-84)

2nd BC, z = L, AP(L. 1) = aP(1) . (3.3-88)
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From {3.3-73) and (3.3-74). in the case of adiabatic processes As = 0,
the second boundary conditions becomes

sam(L. t}) 1 aaP(L. 1) )
" KKl i (3.3-86)

The solution of Equation (3.3-83) in the s-domain is

-2

-2
aM(z, s) = C,e€  + C,e°€ : (3.3-87)

For conditions on the boundaries z = 0 and 2 = L, C; and C, are
determined from Equation (3.3-87) and its derivative with respect to z (to
satisfy the second BC shown in (3.3-86))

L,
AMg(s)e ©  + KK AP (s)
C = T E L . (3.3-88)
—_5 -5
e® + e
L _
AMy(s)e€ - RTAPL(S)
C, = - 5210 (3.3-89)
- ——5
eC ve ©

The final expression for the change of mass flow rate at the oulput
cross-section is obtained from (3.3-87) - (3.3-89)

1 A ShE‘S
AM(L, s) = ———T——AMO(S) - + AP (s) . (3.3-90)
chz-s c ch;—s
[ NESO— S —
Gy(s) Gy(s)

The poles of the transfer functions (whose physical meaning is that
they represent natural frequencies of oscillation of the column of fluid)
characterize the dynamic pioperties and it is not difficult to determine
them by setiting the denominators of G((s} and Gj(s) equal to zero

Ch(—E—o + -E—u]') = Chl_—o COS-E—(.) + jsh—E-o sin-E-w = 0.
c c c c c c
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Both the real and the imaginary parns will equal zero at the same time
only if

cosé—m =0 and sh—}'-'-o =0
c c

whence the poles of G(s) and G.(s) are

o=0 |, (33-91)

L]
2L

wg = (2k - 1) .

_ (3.3-92)
= £(2k + 1)-’2‘——1‘}. k=012 3 ..

Setting the numerator of Gy(s) equal to zero yields the zeros of that
transfer function

06 =0 . (3.3-93)
wok = kn % k = 0, 11, 22, ..
= tkx % k=012 3. .. (3.3-94)

The fact that the poles of the transfer functions are complex conjugate
pairs whose real parts equal zero allows us to conclude that the flow rate
oM (s), in the case of any disturbance from the boundary, will oscillate
with frequencies wy permanently and without damping (o = 0). This is the
idealized case of a fluid at 1est without energy exchange and neglecting
all possible losses. The form of PDE that describes it is equal to the PDE
for longitudinal vibrations of a rod or beam (3.3-4). This similarity is not
unexpected because in the observed case. when there is no flow, the
pipe in fact contains a “ rod" of fluid with its elasticity modulus and
velocity of small pressure disturbances propagation along the pipe.

Besides, it can be seen thal in the case of a finite-dimensional space
(limited space) the equations of conservation do not have a solution that
would satisfy the given boundary conditions for any arbitiary frequency.
Such solutions exist only for a completely determined spectrum of values
given by Equations (3.3-91) and (3.3-92). In other words. in a space with a
finite dimensions, oscillations are possible only for a specific set of
frequencies (of which there are, true, infinitely many) which, since they
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uniquely describe the properties of that space. ate cailled the natural
frequencies.

These results show the main difference between the properties of these
processes and properties of processes with equalization, where the poles
can be real and negative, while here they are complex conjugale pairs.

It was mentioned earlier that the dynamics of pressure change along a
pipe of fluid is described by the same PDE that describes the dynamics
of flow rate. Now this will be shown. We will start from Equations (3.3-T1)
and (3.3-73), which, referring to (3.3-T74) and (3.3-82). in the adiabatic case
(as = 0) obtain the following simpler forms

dAmM 3AP

m = - 32 (3.3-95)
3AP V2 1 sAm
ot A YA oz (3.3-96)

Differentiating (3.3-95) with respect to z and (3.3-96) with respect to t
yields

3%aP v? 1 o%am . V2 1 o%aP

at? A Yp ataz A Yp oz? '

2 2 (3.3-97)
a%aP  _ 522 AP

i az?

This equation is completely the same as (3.3-83), which shows that the
dynamic properties of processes of flow rate and pressure disturtbances
propagation are identical.

For the given boundary conditions, using the same procedure as
before, we obtain

- h_,_
APy(s} = ﬁ_—-— AP(s) + — T—— AM(s) (3.3-908)
ch ‘E'S ch E—S
[ —) | R —
Gy(s) G.(s)

Comparing G; and G, with G; and G, from (3.3-90) it is obvious that the
poles and zeros derived there will satisfy here also for dynamic pressute
changes at the inpul cross-section AP(s).
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Equations (3.3-90) and (3.3-98) can also be shown in matrix form which
will later be used for a comparison with the models from Section (2.2-3) on
processes with lumped parameters.

1 ps sh—s
Po(s) =~ c AP (s)
ch=—s A chzis
™ * . (3.3'09)
M (5) A sh-lé'—s 1 e
AM (s . AM (s
c ch—IS-s ch=I'-'-—s

b2) Fluid flow without heating

The case of adiabatic f{luid flow through pipes is very frequent in
technical practice and is met in the transport of liquids. gases and
vapors. Unlike in the preceding case, now the velocity and mass flow rate
are not equal to zero in the steady state observed (m = O, w = 0), but
q = O still holds. According to (3.3-76), here we will have

BKs - 3K|2

K3=K8=K9=K|3=0. 32 3z

=0 (3.3-100)

and the initial and general PDE (3.3-81) will obtain this special form

2 2 2
3a—f,‘l . (W2 - "2)"625“ N :tfzm =0 . (3.3-101)

For the same boundary conditions and with the same procedure as in
the preceding case changes of mass flow rate at the output cross-section
are

AW
= W°c
AM(s) = éce 3 AMo(s) -
- [ = ~————
—_ = w-C e i wW+C
(weS)e (w-cle (3.3-102)
G'(S)
=2 =2 L - L
p T ey
- L T L\S
- 5 - s
(W*&E)e w-C . (W'E)e wWiC

Gz(s)
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Setting the denominator (which is common to both the transfer
functions) equal to zero in the case of subecritical flow (w ¢ ¢) gives
the poles of G((s) and G,(s)

~2 prey'4 or - =2 we
w-C c-w :

s = Infe—r=| ¢t —5zr—(@k + Dxj. k=0 123 ..

(3.3-103)

The zeros of the transfer functions G,(s) and G,(s) are obtained by
setting their numerators equal to zero:

zeros of Gi(s) ... in the s-plane they lie on the "straight line" oy = -«
(3.3-104)

=2 e
< (3.3-105)

-w
cL

zeros of Gy(s) ... 6pp = O, wozk = tkxn

Unlike in the preceding case bl), where the real part of the set of
eigenvalues (the poles of the transfer functions) equalled zero, i.e. when
the transient process occurred without damping, in this case o is different
from zero and after any disturtbance at the pipe ends, the periodic
changes Aam((t) are damped. Their oscillation amplitudes {althocugh
idealization was performed by taking aPr = APg= 0) converge to zero
with time. Also characteristic of the natural {requencies is that both the
lowest and the highest are equally damped (the same o).

The appearance of the real part that is not equal to zero is a very
important characteristic of adiabatic flow. The transfer functions obtained
differ essentially from those in the case when the f{low process was
obsetved as a system with lumped parameters. If R = 0 is substituted into
the transfer functions shown by Equation (2.2-3.40) (which corresponds to
the loss. neglected here also, resulling from friction. APf = 0), the
classical case of undamped oscillation is obtained, with characteristic
complex conjugate pairs of poles on the imaginary axis. Obviously, the
differences are of an essential nature. For practical purposes, however, it
can be shown that if certain assumptions are made the model shown by
Equation (3.3-102) can be translated into forms that have their equivalent
in processes with lumped parameters. In the usual processes of fluid flow
(which is especially true of liquids) the diffetence between the velocity of
flow w and the speed of sound propagation ¢ are very great, so that w in
Equation (3.3-102) and (3.3-103} can be neglected. With this assumption just
derived PDE, transfer functions, poles and zeros are reduced to the results
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in case bl), so that for w = O the formulas (3.3-91) - (3.3-94) will satisfy
here also, and so will the matrix transfer funclion (3.3-99). If the
expressions for hyperbolic functions from (3.3-99) are expanded into a
series and all the terms of third and higher order neglected. introducing
the coefficients

L < . -T2 TL_
== Tu =Z. IC=T2 F=C

yvields the following first, roughest approximation of the matrix transfer
functions

Py(s) T _léli___ APL(s)
2_52*1 —2—52¢]
= Cs . . (3.3-106)
AM(s) —!2952«\1 -—12—(:—52+l AM(s)

A form has been obtained that corresponds completely to the form of
matrix transfer functions shown by Equation (2.2-3.40). The difference is
that when flow is observed as a process with lumped parameters (Section
2.2-3). the constant beside s? is twice as large as the constant obtained
here with the first approximation of the hypeibolic functions.

However, it must be born in mind that the similarity between Equations
{2.2-3.40) and (3.3-106) has been obtained after neglecting flow velocity w.
From this aspect, the model shown by (2.2-3.40) is limited to processes
with small flow velocities. If the flow velocities w are large and of a
similar order of magnitude as the speed of sound c, the initial equation
(in the case of lumped parameters also) must be Equation (3.3-102) from
which simpler forms, or f{inite-dimensional models, are obtained by
expanding the exponential terms into a series and neglecting the
higher-order terms in that series.

We can use a procedure analogous to the one used to obtain Equation
{3.3-102) 1o get a relation between pressure changes in the cross-section z
= O and changes on the boundaries
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2c

APy(s) = T L AP (s) +
- - —5
(wiC)e W€ . (w-C)e W*C
G(s) (3.3-10T)

L L

- s - ——_——

- e W-C e WiC

+ _} T T AMo(s)
- - s
(wic)e W€ - (w-c)e W*©
G4(S)

The poles and zeros of the transfer funciion G;(s) and G,(s) are equal
to the poles and zeros determined with the help of (3.3-103) - (3.3-108).
Like before. hete also Equation (3.3-107) will be transformed in the
boundary case. when w converges to zero, into Equation (3.3-98) obtained
in the case when the fluid was at rest, bl).

b3) Fluid flow and heating

Studying the dynamic properties in this most complicated case. when
the fluid flows and is heated at the same time by a heat flow of density g
along the pipe (i.e. when there is m = 0, g» 0). is made much more
difficult by the fact that the initial PDE (3.3-8l) is now an equation with
space-variable coefficients: K3(z), f;(z), {(z) and i4(z). In practice it is no
longer possible to obtain a solution in a closed form, i.e. in the form of
analytical expressions, which was easy in the preceding cases bl) and
b2). The coefficients are so complicated that it is necessary to use a
digital computer and try to reach a satisfactory solution using the relevant
approximations. Therefore, we will not enter further into the analysis of this
general case here. The following numerical example, however, will show
the results obtained for a special case, the analysis of the dynamic
properties of a steam generator evaporator.

Nevertheless, before we begin to present the following example, this
remark must be made to make the analysis complete. In the last example
we examined only the dynamics of fast processes of pressure and flow
rate disturbance propagation and completely left out an analysis of the
dynamics of slow processes of entropy disturtbance propagation, which
was given by the first-order hyperbolic PDE (3.3-72). This type of equation
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was analyzed in Section 3.1, and since our purpose here was to examine
periodic processes, we did not pay any attention to slow processes. It is
necessary however, 1o point out that every disturtbance includes
simultaneous changes of mass flow rate and entropy and pressure, so this
separation of fast periodic processes from slower conveciive prccesses of
entropy distutbance propagation makes sense only within the framework of
the theoretical analysis carried out here.

Example 4 Calculations of dynamic characteristics of an evaporator

The evaporator pipe of a steam generator of length L = 28 m and
diameter d = 0.03 m is heated by a heat flow rale of g = 4688 ]/ms
density per unit length. Thiough the pipe flows m = 04783 kg/s of
evaporating fluid (water-steam) that is saturaled and at operating pressure
135 bar at the inpul cross-section. At the oulput cross-section, for a given
q. it is a mixture with x = 0.25 steam qualily. Determine the sigenvalues
(the zeros of the transfer funciion denominator) that characterize the
dynamics of change in mass {low rate.

After introducing some approximations, the solution demanded will be
obtained numerically. This is because Equation (3.3-81) now has variable
coefficients and cannot be solved analytically. In the specific case of the
evaporator, K; depends only on the steam qualily x, and for a given x it
is constant along the whole evaporator. The equalities (3.3-79) and (3.3-80)
show that coefficients {,, {, and {; are functions of coordinate z, but also
of steam quality x. Figure 3.3-5 shows how those coefficients change
along the evaporator pipe depending on the degree of evaporation. (Here
we must mention that the numerical program used to calculate these
coefficients contained all the demanded equations for calculating the
steady state (3.3-59) - (3.3-64), and also the thermodynamic state functions,
for example (3.3-48), (3.3-51), (3.3-52).)

It is obvious that the dependence of these coefficients on z increases
with the increase of the degree of evaporation, and that when x
converges to zero they obtain the same values as the coefficients of the
PDE (3.3-101) from the preceding example. ie. K; =0,
f, = w2 2

- c? = const, f, = 0 and {; = 2w = const. Figure 3.3-5 shows that

changes in the coefficients {; along z, depending on x. are not simple and
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for a suitable description, a second-order function should be used. But
with that approximation an analytical solutien in a closed form would not
be possible. From this follows the natural conclusion that the solution, after
making certain approximations, should be 1eached numerically. Therefore,
to obtain transfer functions relating output flow rate with output pressure
and input flow rate for the given x = 0.25, instead of variable coefficients
along z, we will select for coefficients {,, {, and f;, the constants A, C, B
and use them to solve the task demanded, ie. to determine the
eigenvalues. These constants are also the mean values shown in Figure
3.3-5 by broken lines.

(2110} [m2/52)
0.2 3 06 08 k 1

t3lzl Cm/e)

1202102 [m/52] Ky
02 04 06 08 k  yx=0
0 A A 4 A -
ook 08
-5
cr—————— 05
-10 x=0,25
0.4
-15 x
-20 %205 03
-25 0.2
-30 01
-15
0
40 02 0% 05 08 1 x

Fig. 3.3-8 Changes of the coefficients of PDE (3.3-8]1) along the
evaporator depending on the output steam quality x

The introduction of those constants turns Equation (3.3-81) into a PDE
which, after Laplace transformation with respect 1o time, becomes the
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following ODE with respect to 2 in the s-domain

2
Aéﬁgi}i’ s {C + Bs)‘m—Mé?z—'—s-)+ (s? » Ky8)AM(z, 8) = O . (3.3-108)

This equation is solved in the usual manner, by substituting
aM(z, s) = Ce®S. This leads to a characteristic equation whose roots are
no longer simple expressions, but

-(Bs+C) ¢ /(B%-4A)s? + (2BC-4AKj)s + C?

A, o (3.3-109)
With these ), there is
AM(z, s) = Cie M2 4 TrereZ | (3.3-110)

As before, the given boundary conditions make it possible to determine
the coefficients T, and T,. which yields the following, final expression for
flow rate change in the output cross-section (z = L)

Me()‘l*)\zn-- )‘29()«1*)\2)1-

AM(s) =
aeMh - a,etel

AMD(S) +

Gy(s) . (3.3-1D)

?S__(el‘L - ekzL)

12

+ AP (s)
Mex.l. . )‘zelgL.

Gy(s)

The poles of the transfer functions are the eigenvalues demanded and
they will be reached numerically, as the zeros of the transfer function
denominator

N(s) = yeMb- ae?el a0 . (3.3-112)

A special program is needed for that purpose that will iteratively,
applying Newton's method for the function of a complex variable N(s),
determine an arbitrary number of eigenvalues. Figure 3.3-6 shows those
values both for the case x = 025 and for situations when unheated
saturated water and unheated dry saturated steam flow thiough the same
pipe (i.e. fluids with x = 0 and x = |, and those pairs of eigenvalues are
really the graphical representation of Equation (3.3-103)). Also, as in the
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Fig. 3.3-68 Presentation of eigenvalues for cases of evaporation
(xout = 0.25, 0.5, 1) and adiabatic flow with x = 0 and x = 1

case when there was x = 025 in the output cross-section, pairs of
eigenvalues obtained by approximation for the evaporator pipe with x =
0.5 and x = 1 at the output cross-section are shown. Several conclusions
can be drawn from Figure 3.3-6. First, the eigenvalues are complex
conjugate pairs, which again shows that changes of mass flow rate are
periodic. (It must be remarked that the ordinate shows both the positive
and the negative imaginary axis, which results in the complex-conjugate
pair being given by one pcint in that s-plane.) Second, the higher the
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degree of evaporation the more leftwards the whole spectrum moves, ie.
the greater the damping or real part o of the eigenvalues. Third, both the
lowest and the highest frequencies are equally damped because their o
are the same and all the eigenvalues are on the same straight line. (All
except the first eigenvalue in unadiabatic cases of evaporation, which is
displaced further left. That displacement is caused by the approximation
that was just carried out.)

This ends the presentation of dynamic processes with distributed
parameters, and once again we must emphasize the basic characteristics
that have always been present in this analysis. The dynamics is described
by PDE and thus the model is of infinite order. Those equations can be
solved analylically in the closed form only for cases of very simple
geométry and if many assumptions are made, which mean an idealization
of the problem. In most cases, to solve the dynamic problem numerical
methods and computer processing are used, which usually gives
satlisfactory solutions. The basis of those methods are various procedures
of discretization with respect to the time and the spatial variable.

There is great similarity in the dynamic properties of processes with
lumped and distributed parameters. When the spatial variable - is
discretized the property of distribution is lost and such processes become
processes with lumped characteristics. In the mathematical sense this
means the order of the model has been reduced, making it finite, and now
the model describes the basic (and in the dynamic sense the slowest)
dynamic properties. The lower the degree of reduction, i.e. the higher the
order of the model thus obtained, the better included the higher
eigenvalues are (smaller time constants or greater natural frequencies).
The responses shown by a model obtained by reduction deviate from the
responses of the real distributed process in the first parts of the transient
process (i.e. for smaller t), which is the result of the fact that the faster
modes. in the dynamic sense, of the total response were not included in
the model. The lower the degree of reduction, the smaller that " dynamic
mistake" is.



APPENDIX
A

DIFFERENTIAL EQUATIONS
AND STATE SPACE

One of the fundamental and most noticeable characteristics of all the
processes that were analyzed on the pages of this book was that the
mathematical tools used to describe their unsteady states were differential
equations. These equations were described by different adjectives
depending on their specific properties - ordinary, partial, nonlinear or
linear. Their coefficients were constant or variable. We must remember that
at the end we tried (and in most cases succeeded) to reduce all these
different notations to one or several ordinary linear differential equations
(OLDE). This equation or system of OLDE we tried to translate inio the
form of matrix state-space differential equations.

We will not discuss the accuracy, advantages or disadvantages of
these mathematical tools. Many pages could be written about their
successful use and the wide field in which these linear models can be
applied. Here it is, perthaps, enough to say only that linear models are
used in very many technical disciplines and that they have contributed to
the practical and theoretical sclution of many problems in these fields.
Modern control theory is certainly one of the leading disciplines in the
extensive use of the mentioned models, but useful and important results
have also been obtained from. their use in the theories of vibrations,
acoustics, thermal and flow systems and in designing electrical circuits.

In the following lines, without the usual mathematical strictness, we will
show some basic properties of differential equations, connections between
one n-th-order DE and a system of f{irst-order ODE, and how 1o present
such a system in the form of (many times already mentioned) matrix
state-space equations. Everyday technical practice has shown it to be
useful to translate every existing model of dynamic plocesses into a
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system of first-order DE. (One of the more important reasons why this is so
is that mathematical libraries of modern computers confain system
programs specially developed for solving systems of first-order DE.)

Let it be possible to write the nonlinear (or linear) n-th-order DE as
follows

™1 % x x L xD (A))
(In the above equation we did not specially emphasize that the
function x and its derivatives are functions of the independent variable t,

i.e. we did not write x(1). x'(t) .. and so on.)

The following substitution, i.e. the introduction of new functions

X = Xy,

x'sx' = x,

X" = X' = Xa,

x(n‘l) = Xnhg = Xn

x(n)= x' = {(t, Xy Xz . Xn)

yields this system of n first-order DE

Xy = Xa,
Xz = Xs, (A2)
xp = It Xy, Xz, ot Xn)

The above system is only a special case or a form of the following

system
x“ = f| (t. X4 X240 wees Xn)'
xz' = 1 (4, %4 Xp, ... Xp) (A.3)

........

xn = I, (t, X, X2, ey Xn)-

which is usually called a normal system of DE, where it is supposed
that the number of unknowns equals the number of equations. Later. at the
end of this appendix, it will be shown that notation in the form of dynamic
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state-space equations is in fact a matrix 1epresentation of the nommal
system of DE.

The solution of the above system is a set of n functions x,(t), x,(1).
x3(1), ... xu(t) that satisfy all the above equations.

K special (or particular) solution is the set of such functions that
also salisfy all the initial conditions

x,(t=t0) = x1(ta). x2(t=to) = x2(to). vers Xn(t=to) = xn(to)- (A4)
where x(to). .... xp(te) are given numbers.

Here this will not be carried out, but the existence and uniqueness
theorem for the solution of a normal system of DE would not be difficult to
prove. We consider it more useful to show the opposite of the above
derivation, i.e. that the normal system of n first-order DE is equivalent to
one n-th-order DE. With this in mind, we will differentiate with respect to t
the first equation from the system (A.3)

dix _ofy o dxy | of dx, o af dxg
dt ot ox, dt ax, dt Tt exp dt

Replacing the expressions dx;/dt = x'; by their equivalent functions
fi (t, %y, Xa. ... Xp) vields

dz)ﬁ ‘a_fl_‘__é_fi +_aﬁf+ + af‘f

= m 3% 1 3% 2+ .. oXn n .

d2

Et?"("— = Fo(t. Xy X2v e Xn) (4.5)

Differentiating the last equation and referring to (A.3) yields

d’x, dF, aF, aF, 3F,

dt a ’ axy ! ¥ X3a fos o axnfn

d3x

7 = Fall xp Xz o %) (A.6)

If this procedure is continued. we obtain

............... (A7)
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d'x
'a-ﬁ‘— = Fn(‘. X1s X2y venr xn) .

Now it is possible to write the following system of equations
dx
dt

d?x
-Et-z-'— - Fz(t. Xy, X3, .. xn)

= f1 (t. Xy Xp, ey xn)

(A8)

d™x,
dit

= Fpll, %y X2, « Xp)

From the above system (A.8) we can express {(n-I) unknown functions
X2. X3. ... Xp with the help of the function x, and its derivatives of up to,
and including. the (n-1)st order. lf those functions are substituted into the
last équa%ion of the above system, we finally obtain

d™x,
4t

dr, dVhx,

= G(t, Xy, dr: —d?\——'

) (A9)
To prove the validity of what has just been derived we will use the
general solution of the last equation, which includes n unknown constants

Xy =gy (t. Ci. Cp, s Cp) (A10)

Substituting x, and all its derivatives intoc the expressions for x,. xj, ...
Xn. obtained from the first n-l equations of the system (A.8), yields the
following solution

git. Cy. Ca .. Cp).
= golt. Cy. Ca. ... Cp). (A

Xn = gn(t. C‘, Cz. caee Cn).

LA
PNAIEA
1 »

This ends our proof. since it is not difficult to show that the system
(All) in fact represenis the solution of the initial normal system of
first-order DE (A.3).

The above lines have shown the relalionship between one n-th-order
DE and a system of first-order DE, which is often used in practice to solve
a dynamic problem. In that technical practice, however, it has been shown
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useful to distinguish between the variables, or funciions, and to denote
them by different letters appropriate to their physical meaning. In all the
examples we showed, whose dynamics was desciibed by one or several
first-order ODE, it was always possible to distinguish belwsen three basic
variables (functions):

- input variables were denoted u(t)
- state variables were denoted x(t)
- output variables were denoted y(t)
Figure Al shows graphically the relations among these variables.

In many of the examples we pointed to the 1elativity of the selection of
state and output variables, while the input functions were usually known
and completely determined.

Nevertheless, state variables are not arbitrary variables in the process
and they must be selected to correspond with their following definition:

State variables are process variables whose knowledge at the moment
to. knowing the laws governing the behavior of the input variables for
every t » t,, enables the complete determination of the output variables
for every t » t,.

State variables are time variant (they are functions) and the set of their
momentary values shows the state of the process (system, object). If it is
necessary to know n state variables to describe a process, then the
process is said to be of n-th order and its mathematical description is
given by a system of n first-order DE.

Where, then, does the fieedom of choice for state variables lie? This is
the easiest to show on an example, and the simpler the example, the
clearer the proof. Let us examine the case of the liquid storage tank
(Section 2.1, Example 2), for which Equations (21-127) and (2.1-1.28) already
showed that it is possible to select oulput variables freely depending on
needs. In that example we selected changes in liquid level AH as the
state variable, since changes in AH r1eally did uniquely determine
(through the equations we mentioned) changes in the cutput variables for
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arbitrary input variables Ami(t) and AAJ(t). However, the state of that
process, i.e. the operating regime. is. in fact, determined by the amount of
liquid that is stored in the tank at the moment t,, and the liquid level is
only the measure of that amount. Thus the idea that changes in stored
mass AM could also be selected as the state variable is not
incomprehensible, especially as for this tank of constant surface area
there is

input variables state variables output variables
{inputs, excitations, (outputs, responses,
disturbances, noises) solutions)
Ut} —————— x(t) e Y'“,
uglt) x,(t) = Y,{t]
Ul t) e Xl t) ey, (1)
u X Y

Fig. K.1 lllustration of the definition of input, state and output variables

AM = ApaH . (A12)

If AH is expressed from(A.l2), the state equation changes appearance
and becomes

[aM] = [-=] [aM]+ [1 Ka] [i‘;‘l] : (A13)

And, of course, if' liquid level is a contiolled variable, the output
equation now also changes appearance and instead of (2.1-1.27) becomes

[aH] - (5] [aM] + [0 0] [i’;‘;] . (Al14)

It is very important to note that the order of the system is uniquely
determined. and whichever variable is selected, the order of the system
cannot and must not change.
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It must also be mentioned that the state variables need not have a
clear logical or physical meaning, although it is in practice useful to
chose them so that they do have a clear meaning o1, even, so that they
are always measurable and accessible variables in the process. (The
demand for them to be measurable and accessible can often not be
fulfilled.) Thus, for example, multiplying the whole state equation (2.-1.24)
by n and intrtoducing a new state variable AV = naH (which equals an
n-fold change in liquid level) yields

[av]= [-=][av]~ [_C“_ _“C&‘] [ﬁ‘:(')]. (A15)

Here we can conjecture about the physical meaning of the state
variable AV, but it is clear that the selection is neither logical nor natural.
Nevertheless, solving (A.15) would give completely valid solutions for AV,
with whose help it would be possible to determine the other variables of
interest as well.

It is also advantageous to treat the concept of state space. This term
has come into process dynamics analysis from mathematics and it has a
clear physical meaning. Turning again to the same example of the storage
tank whose model is given by the state Equation (2.1-1.24) and the output
Equation (21-1.27). we can r1epeat that it is a first-order system since it
consists of only one mass storage tank. Therefore, as time passes only one
variable changes due to input variable change, and that is the liquid
level AH. (Obviously. output flow Am, also changes, but that change
depends both on the input variables u(t) and AH, which means on that
state variable, while change in AH depends only on itself and on input
variables.) The process is one-dimensional in the sense of there being
only one dependent variable. Changes in that state variable can be
shown in two ways: in a t - AH diagram and in the one-dimensional AH
space in which time t is given parametrically. That space is called the
space of state changes or state space and is shown in Figure A.2b
for the case when at t, = 0 water flow into the tank is discontinued and
water level in the tank equals | m, which results in free outflow. (Since
this is a one-dimensional system. we could also have called it a line of
state.)
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_X_(T) _)5(0)/(=O AH:X|
-1 0 tZ’ 1

a) b)

Fig R.2 Graphical presentation of state changes in a
one-dimensional problem - line of state

If the variable is stored in two tanks the process is of second order
and there are two state variables.

In Section 2.2-3 (Example 1, Figure 2.2-3.2) the t-x diagram shows how
those two state variables change (x, = AP, and x; = Am,) and Figure A3
shows the same in the state space (plane). ie. in a AP, - Am, diagram
where time t is the parameter. The trajectory of state change is typical for
periodic damped processes in which the state variables, for a given input
Am; = 1, converge to a new steady state (0,1).

Fig. A.3 Graphical presentation of state changes in a two-dimensional
problem - plane of state. phase plane
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In Figure A.3, as indeed in all the other presentations of state space, it
must be observed that only one trajectory passes thiough one point of the
state space. This is a direct consequence of the definition of the siate
variables themselves., according to which, for given input values
yj(t} (G = 1. 2, .., m), they determine completely and uniquely the future
behavior of the system for every t » t,. (Exceptions are so-called singular
points in state space.)

Finally, in the case of thiee storage tanks in series the stale space
would be three-dimensional and the trajectory could be shown as a curve
in three-dimensional space with coordinates Xy - X3 - X3
(aH, - AH, - AHj. in the example with three storage tanks - Section 2.5).

Therefore, we can say that the dimension of the state space equals the
number of state variables necessary to describe the dynamics of the
process under observation. If that dimension is n <« 3 the state space can
also be represented (graphically), but for mathematical processing the
impossibilitly of graphical representiation for cases of n » 3 is of no
essential meaning. (In mechanics the state trajectory in second-order
systems is very frequently represented, and then the state space (plane)} is
called a phase plane.)

It must also be emphasized that in a large number of cases the order
or dimension of the process model, i.e. the number of first-order DE that
describe its dynamics, is not firmly determined but greatly depends on the
final purpose of the modeling. Or. in other words, almost every process
can be described by models of different order-fiom those that describe
only steady states (0-th order models) to models in the form of partial
differential equations (infinite-order models). Therefore, it must always be
remembered that in most cases a dynamics process model is in fact a
hierarchy of models describing that process - from very simple ones to
those of great complexity. The final goal of modeling., the equipment that
is to be used, the mathematical methods, procedures and programs that
have been developed, economic considerations, time and personnel - all
these are factors that determine the complexity, accuracy and price of the
model derived.

Finally, before presenting the most general system of first-order DE in
the form of matrix DE of state space, it will be useful to give a clear and
simple example of a model using the notation u, x and y for the variables
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of input, state and output. That transition to the general and absiract form
of notation will be shown on Example | from Section 21-2 on gas storage
tanks, whose model is given by Equations (21-210) and (21-29). We
introduce the notation:

x,(t) = PQ1) .. the state variable is the pressure in the tank
u() = myt)

u{t) = Po(t) .. input variables

us(t) = A1)

y(t) = P(1) .. output variables

yo(t) = me(t)

In further equations we will no longer emphasize that all these are
time-dependent variables, so the dynamic model of the process of filling a
storage tank beccomes

X' = -kugyualxy - up) + uy

Y1=X|‘O'U|*O‘U2’O‘U3. (A.lé)

y2 = kg ‘/uz(xl -up) + 0 -y

In this system the dependencies that do not exist are especially
emphasized (by multiplication with zero). In general, therefore, the above
system has the following functional form

xty = 1 (Xu Uy, Up, ug). NL
Y = G (x‘l Uy, Up, 1.13)‘ L (AIT)
Y2 = d2 (X uy up ug). NL

The original model given by (A.IT) is nonlinear and in principle further
analysis of the process can take two different directions. The first is direct
numerical integration on a computer., which presents no special difficulties.
The second has been shown in Section 2.1-2;, it includes linearizing the
original model, translating the linear model into matrix state (space)
equation notation and obtaining a matiix transfer function which clearly
shows the character of the output variables' dynamic dependence on the
input variables. Without repeating the procedure of linearization, it is
useful here to give a more abstract form of the linear model shown by the
state-space equations (2.1-2.26) and (2.1-2.27)
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X'y = apXy + byuy + bypup + byaus,
yy =1l % +0-uy+0:u;+ 0. us (A18)
Y2 = CoXt ¢+ 0 - u, + bzz - Uy + bgg * Uj.

It must be noticed that the zeros in the linearized model appear in the
same places where there was no dependence in the nonlinear model.

Now it is possible to give the most general preseniation of the dynamic
mode]l of a process which has m inputs, n states (the system is of n-th
order) and r outputs

X'y = f; (%1 s Xpt Up e Upp)s

X' = £ (X4, .. Xy Uye oy Um),

....... (Al19)

x'n = 10 (¢, ooy X Ups oo Up)

In the genetal case. the functions f; (i =1, 2, ... n) are nonlinear. The
output variables y; (j =1, 2, ... 1) are related to the state variables and

the input variables by static, algebraic equations of this general form

Yi= o (x1- Xp, -ooo Xpp Uy, Up, .., Um),

Y2 = g2 (xt- X2, e X Uy Uz, um),

...................... (A.20)
Yr = dr (x,. X2 oo X Wy, UQp, e Um).

Functions gj (j = 1. 2, ... 1) are also in general nonlinear. Equations

(Al6) are an example of one such nonlinear system in which the
nonlinearities are of the square root and product of functions x(t) and u(t)
type. In most of this book we made efforts to transform originally nonlinear
models given by (A19) and (A.20) into a linear form of the following kind

x.| = anXy, + g% + ... + @ipXp + b|‘U| + b|2‘.12 + ...+ b|m\1m.
Xo = QpnXq + QppXp + ... + QpnXp + me.g + bggUz + ...+ bgmum. (AZI)

X'n = @uXy + 82Xz + ... + 8ppXp + DPpuy + bpaliz + o+ bpmUnm,

Y1 = CuXy + CioXp + .. + CinXn + dyiy + djpliz + . + dimlUm,
Y2 ® CaXy + CgXp + ... + CopXp + d2|U1 + dgzUz + 4 dgmU.m. (A.ZZ)
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In vector notation the above equations get the well-known form of
matrix state-space equations

X'=AEX+BU , (A.23)
Y=CX+DUVU

Now it is esasy to see that what was shown earlier about the selection
of state variables not being unique is also valid for the most general case
given by model (A.23). It is known that the coordinates of a point in
n-dimensional space depend on the selection of the base, ie. on the
system of muiually perpendicular unit vectors along which the coocrdinate
axes are directed. By changing the base we can move from the state
vector X to the state vector X using the simple transformation

x-MX M~0. (A.24)

M is an nonsingular matrix of order {nxn). For every such transformation
there is also an inverse transformation

X=M'x. (A.25)
If. thus, the system of state equations (A.23) is valid for the vector of
state variables X, then for the new vector of state variables x there

will be

x'=AX+BU

(A.26)
Y=éx+DU
The old and the new matrices are related as follows
A=MAM'
B=MB . (A.2T)
é=CcM”

It is obvious that there is an unlimited number of different
transformation matrices M and it would be difficult to expect the new state
variables to retain their originally clear physical meaning afler an
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arbitrary transformation. Therefore, if such transformations are performed,
they usually have a deliberately selected matrix M which serves to
transform matrix A into a form that is suitable for the dynamic analysis of
the process déscribed, and which makes it very much easier.

Finally, we must repeat that spatially distributed processes, whose
model is a system- of partial differential equations (PDE), cannot (without
additional procedures of discretization) directly be described by a model
in the form of matriix state-space equations. This results from the fact that
such a system of PDE (or just one) describes changes of process variables
in every point in space inside which the process occurs, and there are, of
course, infinitely many such points. Therefore, system matrix X would be
of infinite order. Only after spatial discretization has been performed can
a (reduced) model of the spatially distributed process be obtained in the
form of a system of ODE like the one given by (Al19) and (A.20), from
which it is not far to state-space form (A.23).

It must also be remarked that, although such examples werse not treated
in this book, the coefficients of matrices K, B, €, and D as a rule need
not be consiants, but can be functions of time t. Such processes will be
called time variant processes, and to distinguish them from the.
notation used up to now, time t will appear explicitlly in the functions
fii=12 ..,n and g (=12 ..1). as was the case in (Al). A
time-variant system would, thus, be characterized by the following notation

x.i = fl(tl X X240 oenn X YUy, Ug, o, Um) (i =1, n) (AZB)

To get a solution for such systems it is necessary, besides knowing the
initial conditions x; (i =1, 2, ... n)J and the input functions
u{t > t,)(j = 1, 2, ... m), to know also the time t when the disturbance
occurs and calculation begins, because now the law governing state
variable changes will no longer be the same at two different moments for
the same initial conditions and inputs.
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MODEL LINEARIZATION

Linearization is the replacement of nonlinear mathematical expressions
1elating process variables with linear ones. Linearization has been used in
this book in almost'every example, which shows that in everyday
technical practice originally linear models are in most cases
the exception and that in by far the greatest number of processes the
relations between the input, state and output variables are nonlinear. The
persistence, however, that is shown in deriving models and transforming
them into linear forms points to the great theoretical and practical value
of such linear mathematical forms.

The main reasons that justify this procedure are the following:

- for small deviations from the usual operating states the linear
model behaves like thé original nonlinear process,

- linear models are solved using the highly-developed and
powerful mathematical apparatus of linear algebra, which is
today part of standard mathematical computer libraries,

- the principle of superposition is used, so it is sufficient to
examine systems with unique and simple input signals on the
basis of whose responses dynamic properties can be typified
(into proportional, integral, derivative), which leads to a
generalized and unified approach to the analysis of dynamics
of otherwise different processes,

- as stability is a property of the process itself and does not
depend on the initial conditions or disturbances, the
examination of the stability of a certain steady state or
operaling regime is reduced to an analysis of the eigenvalues
of systern matrix A.

None of these properties {(excepi, of course, the first) characterize
nonlinear models, whose basic feature is that general solutions, methods
and approaches cannot be used. Every nonlinear process contains within
it a different form of nonlinearity that demands a special method of
solution. This impossibility of a unified approach (the impossibility of
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generalization) is one of the reasons why nonlinear theory is still in the
phase of development and intense study. Nevertheless, one unified
approach to such systems does exist, and that is the pilocedure of
numerical simulation of the nonlinear model. Today this is the most
frequently used method for analyzing such piocesses and it can be
applied without difficulty to every example in this book.

In practice the system variables in devices, plants and piocesses are
connected by various forms of nonlinear relations: limiters, switches,
breakers, flip-flops, saturalions, dead zones, f{riclion, clearances and
hystereses are only a small number of typical nonlinear relations. In the
text of this book we encountered nonlinearities that were analytically
expressed in the form of products beiween variables, square roots,
squares and the like, or nonlinear r1elations were shown graphically in
diagrams of characteristics.

For such varying cases of nonlinearity, and depending on the final
purpose of the model, today the Ifollowing developed methods of
linearization are usually used:

- the method of tangential approximation or linearization about
the operating (usually steady) state, in which nonlinear
characteristics are replaced by linear ones (in two-dimensional
space this means replacing the curve by the tangent in the
operating point). In the mathematical sense this means
developing the functions into a Taylor series in which all the
higher (nonlinear) terms are discarded. The procedure is the
more successful, the smaller the deviations from the operating
state,

- the method of the descriptive f{unction or harmonic
linearization, which linearizes processes in the frequency
domain and not in the time domain, as in the above case. In
control theory this method is often and successfully used and
its main feature is that only the signal of the basic frequency is
recorded in analysis while the higher harmonics are considered
damped. The success of the method depends on how similar
the processes are to low-frequency filters,

- the method of statistical linearization is also performed in the
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time domain. Here the nonlinear process is 1eplaced by an
equivalent linear mode! assuming that the disturbance has a
normal (Gaussean) distribution,

- the combined method of harmonic and statistical linearization.

In this book deterministic processes were analyzed in the time domain
(smaller excursions into the domain of the complex variable were
performed to obtain and demonstrate transfer functions), so the subsequent
lines will show only the method of tangential approximation becauss it
was used in all the examples in the preceding seciions and is today still
the most frequently used. (In Anglo-American literature it is often called
perturbance analysis. This name is used to show that the method yields
linear models that describe small deviations, pertutbances, f{iom the
operating state.)

The basic assumption that must be f{ulfilled if we want to apply this
method is that the r1elations belween variables must be given in a
functional form that has a finite first derivative in the operating point
about which linearization is performed (i.e. that they are differentiable at
least once), and if the relations are shown by a characteristic curve, then
it must have a clearly determined tangent in that operating point. This
method, is, as a rule. not suilable for step and other bioken or
discontinuous nonlinear relations.

Tangential approximation of a nonlinear function is performed by
expansion into a Taylor series (if the function is given in analytical form)
or graphically if the relations are shown in diagram. This second method
was shown in detail in Section 2.2 where the statical characteristics of the
centrifugal pump and of the regulation valve were linearized. Using
Figures 2.2-12 and 2.2-13, we obtained linear expressions for the pump,
(2.2-1.10) and (2.2-116), and f{or the valve. (2.2-111) and (22-11T). The same
procedure can be used in all the other cases and here it will not be
repealed. Before the method of tangential approximation is demonstrated.
the state and output equations given by (Al9) and (A.20) should also be
given in vector noiation

X' =f(X 0 (A.29)

Y =¢glX U (A.30)



MODKL LINKARIZATION 261

ay=y-y

ay=Kau

K=32 -tga

Fig. A.4 The meaning of tangential approximation

The meaning of linearization is the easiest to comprehend in
two-dimensional space where relations among variables can be shown by
a curve and a tangent in the operating point. In the case of
three-dimensional relations the graphical presentation is a surface in this
space and the plane tangential to il, and in the most general case it is a
hypersurface and its tangential hyperplane, which cannot be shown
graphically. Let the output variable. therefore., be related only with the
input variable by the following relation

y = g(u) . (A.31)

For a given U, y is determined and the operating point R{u, y) is
shown on Figuie A4

Expansion into a Taylor series about the point R(u, y) vields

- d - 1 d?g =
y=y+ d—Lgl(u -u) + —ﬁﬁ(u -u)? s (A.32)

The deviations shown here are calculated in the operating point R. If
analysis is limited only to small deviations, then the square term and all
the following terms of higher order can be neglected because they are
much smaller than the linear term in the expansion, so we get

y-y-= g—g(u -, (A.33)
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dg

Ay = KAu, K’aﬁ"

(A.34)

Now we have got linear dependance. no longer of the
absolute values of variables u and y, but of the values of
their deviation Irom the operating state. It is impossible to form a
general criterion about the validity of the linear model, i.e. to answer the
question - what is the range of variables for which the linear and the
nonlinear models give close results. The adjective " close" is rather an
unprecise formulation for the model's accuracy. What has to be done is to
check, for every parlicular case. what the allowed deviation of the linear
model from the nonlinear cne is. However, the value of the error can
always be obtained because it equals the magnitude of the discarded
higher-order terms. The {ollowing simple example shows the difference in
results yielded by the nonlinear and the linear models.

y = u. R(2. 4) U=29Y=4

Expansion into a series gives

<\

y =+ 200 - D) ¢ gy -GF
y=y+4-u)+ (u-u? nonlinear model

If the lasi, square term in the expansion is neglected. the following
linear model is oblained

y-y=4@u -u
AY = 4Au linear model

Obviously, the difference between those two models, or the error made
by neglecting higher-order terms, equals

e = W - v = (u-u?=au?

Table showing the results and their graphical presentation



MODEL LINKARIZATION 263

Nonlinear model Linear model Ertor e
u | yyp| ou |8y Aul Ay | u [y e-yNL-yL=Au"’
0 01} -2 (-4 -2 -8 0 (-4 4
i Iy -1 -3 -1t -4 110 1
2 41 0 0 0| ©O 214 o]
3 Q9 115 11 4 3| 8 1
4 61 2 |12 21 8 4 |12 4
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\\ i/ Ay, =5
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U
[
[ |
i‘/i,auﬂ
G=2 u

Fig. A.5 Enror due to the linearization of the curve u?

The figure shows the value of the error. For example, if the input
variable u deviates by B0X, ie. for Au = ], the linear model makes an error
of 111%, or the value given by the linear model is 11I¥ smaller than the real
value given by the nonlinear model. Herte we must immediately consider
whether there are such processes in which the input variable changes its
value by 50%, and whether it matters if the error in calculation is of the
above order of magnitude. For smaller devialions the errors are smaller,
almost negligible.

The same procedure that has been shown for the two-dimensional
problem can be used when y is a function of several input and state
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variables, i.e. when it is given in the form (A.20)} or (4.30). In such
higher-order processes, in which we distinguish between state and input
variables, expansion into a Taylor series will be shown on the i-th
differential state equation from the system (A.19)

X{' = t‘(x,. ey xn) uj. esrs um) (A'35)
n m
' . af.l bt ari =
X' = X ojgl:;g(xj - X)) *k,,zl:s‘?k(uk - ) 4o (A.36)
[;]l = f[(;g, cven §n1 G]. wern Gm)]

The above equation does not contain the square and other
higher-order term of the expansion. x'| is the derivative of the state
variable x; in the operating point. (It is usual to perform linearization of
DE about the steady state, and then there is X'} = 0.)

Equation (A.36) yields

- _ - af af; of, afy
- X' = A% = EA}Q + . a.anx" + au,Au' ot auméu'" {A.37T)

The system of equations (A.21) (in which the symbol A has been left
out) was obtained from the above expansion of (Al9), and the coeiiicients
a and b are

of; ofi . .

a,j=3Yj_, lk-ml,]-l,....n k I, .. m

The value of the partial derivatives is determined in the operating
state observed.

The coelficients a;; and bjx are members of the matrices A and B, so
we can write

of of
R- (g - B= (5gir (4.39)
The subscript R denotes that the partial derivatives are calculated in
the operating state R.
Exactly the same procedure is used to linearize the output equations

(A.20) and (A.30), only instead of x; and the function f; we now have
output variables y; and the function g;.
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Tangential approximation is a method that can be widely applied, but
it must always be born in mind that the domain in which the variables
can change aftler linearization has been performed is limited to 6. 10 or
20% of the steady values of those variables. The following figure is a
gr'aphical presentation of how two completely different processes can
have the same linear model for a given u.

f,(u)
fz(U)

£, (@ ]

£,1G)

Fig. K.6 Two different processes with the same linear model

It must also be said that in the case of a nonlinear model it is very
important to determine the operating state in which linearization was
performed. The nonlinear model can have one, two or more steady states.
or it can have none, so we must consider problems of determining the
steady state as well. Here we will not enter this analysis and the reader is
teferred, as a small 1eminder, to the last example of Section 2.4, where it
was shown that the moving pendulum has iwo steady states in which
linearization gives different matrices K, which also means different linear
models with essentially different dynamic properties.

In practice. other ways for obtaining a tangential approximation are
also often used. The most widespread proceduré is to substitute into
nonlinear expressions the values for variables which are 1epresented as
the sum of the variable showing the steady state and that showing
deviation from it. On the nex! simple example we will show this method,
which avoids partial differentiation.
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Linearize the following nonlinear output equation
y = xu ., (4.40)
about its steady state (X. 4. y).
Introducing

+ Ay,

+ A, (A.4])
+ Au ,

y=
X =

21 XRi<i

u =
(A.40) becomes

(x + Ax)-{(U + Au)

Yy + Ay
(A.42)

Y + Ay = XU + XAU + UAX + AXAU

As there is y = xu, the first terms on the left-hand side and the
right-hand side cancel out. For small deviations the product AxAu is very
small, and can be neglected. Thus (A.42) yields the following linear
expression

Ay = UAX + XAu . (A.43)

Of course, the same result would have been obtained by expansion
into the Taylor series

y=F ¢ (SDpex - 0« Sl - B . (4.44)
Ay - Yy —

(E)R'-‘ ., (E)R‘; X,

AY = UAX + XAu . (A .45)

There is one more method which indirectly represents expansion into a
Taylor series in which higher-order terms have been neglected. It is the
method of differentiating the whole nonlinear expression, after
which infinitesimal changes are 1eplaced by finite deviations. On the same
example this method gives
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9y dy
dy (E)Rdx + (I)Rdu v

dy = udx + xdu . (A.46)

Now the symbols for infinitesimal change d are 1eplaced by the
symbols of finite deviation A and the same linear model as before is
obtained

Ay = UAX + XAu

This method of differentiating is probably the most suitable for use. It
has been used in almost all the examples in this boock and was also used
to linearize the PDE in Section 3.3 - see the derivation given by Equations
(3.3-6T) - (3.3-71).

There are other methods for obtaining linear models also. One of them
was shown in the last example of Section 2.4, where the linear model of
the moving pendulum was reached after so-called algebraic linearization -
the substitution of sine and cosine functions by functions similar to them
for small angular displacements. Besides this method, that of least squares
is used in practice 1o determine coefficients of linear development. Today,
thanks primarily to possibilities opened up by computers and in cases
when it is very difficult (because of the size and complexity of the model)
to perform differentiation analytically, the linear model is armived at
numerically.
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SELECT FUNCTIONS OF COMPLEX VARIABLE

2 n n k
es=1+—s—+—5-—+...+ s+...=z—§—-
T nl o K
eS = eX(cosy + jsiny) el = coss + jsins
ols 4 o7is . ols . ois
coss = ——————— sinsg = ————
2 2j
2 4 2n
1.3, 5 . s
coss = 1 TR e+ (D G + .
coss = cosx + chy - jsinx * shy
5 2N +1
: s e. 2,5 nn 5
sin s = s- 3+ gt (00 gy
sins = sinx - ¢hy + jcosx - shy
chee1.52,80, s o e+e”
21 4y (2n) 2

ch s = chx * cosy + jshx - siny

3 ] 52114'!

Sh5=5*-§!—+—-5T+...+ —(Z—nT—l)li'...'——-—z—-—‘

shs = shx - cosy + jchx - siny

shs chs
chs cths = shs

ths =



BASIC DYNAMIC PROPERTIES

269

Transient

function

T Differential Transfer u Poles x
ype equation function [response to u=h=1(tz0)} . '] Zeros o
x “:u
K| 5...plane
P x = Kpu K Kp P
t
9x = L —el
R Tar+x =Ku o Ko(1-e")
periodic case . sz [ 1 R
i “Ts+1 Kol 1- et
bl TR T ex=Keu TpsieTs N
! g -T2t Yo ek ( )
W= T, E=TI2T, - t esin{wytey
" o= orctg Ui .
x
t
1 1 1 1
2 = —_ — ¢ - fm——— B
I X Tlfudt T T T :
v _ 1 t
' b -
t 4 -
[ 1 Lit-T(1-¢e" ?\,«] % —
I‘ T R T udt TslTs+1] TI[ { )] /t// ~ Z %
[ 1z < t T
T
x
D x=T, %‘% Tis Ta6(1) {
—4 t
Ta § %
dx dy Tos T 7 T
0, Tat *x=Tagr Ts+3 Te i
J t T
X l———
PD x=usT, 3 1+ Tys 1+ T,501) 1 o ——
| S 7
L =R
dx . du Tys 1 Ta_ oy ol T |
PD.‘ Td—(-'x—UOTda-(' Te 3 ‘.(f 1}e T, '*‘ -—o—‘< 'T‘:r
R |7l T
x
-Tis _
T x=ult-T,) ' 1t-T,) Ll - —
. i [}
non- . \
mini- dx du -Ts -2
".;’um Tao)(:u-]'—d—" 1+ T1s 1-2e
phase
o o ,
PI x=Ku-K,fudt : K, K,Hf-ﬁ)
Klhegsh e
)]
K,-“' T—'
' 1S K t T A
PI1 Tix'e x = Ku+ K fudt —1:;is—'Ki=?iL K,[—T—‘OH"T‘i""P ]
1 L4
Kelte s + Tys) t T "1z
PID x = Ku e K fudt-Kgu' ' Ky [1e s TaS(1)

K
K=K, K= .—riL'Kd=K,T¢

=TTy

Ty*T= Ty




LIST OF SYMBOLS

(Numbers in parentheses indicate sections)

m/s

J/kgK
m/s
mol/m?
N/m
Nm/rad
m

Ns/m

Nms/rad
m

I
N/m?

]/s

area

system's matlix in state equation
acceleration

accumulated (stored) variable
area (2.5)

acceleration

arbitrary coefficient

input's matrix in state equation
valve coefficient (2.2-1)
coefficient of capacity

output's matrix in output equation
specifié heat

velocity of sound {2.2-3), (3.3)
concentration

spring cornstant

torsional spring constant
diameter

viscous friction coefficient
input's matrix in outpul equation
torsional viscous f{riction coefficient
diameter

energy

modulus of elasticity, Young's modulus (3,3)
offort (potential)

energy (heat) flow rate

force (2.4)

flow

various function

transfer function

matrix transfer function

various function

height of liquid level, head
Heaviside function of unit step
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I coefficient of inertia

Im = Mw  kgm/s momentum

i J7kg enthalpy

] kgm? moment of inertia

K gain coefficient

Ky valve characteristic

k=U/T /s heat (thermal) coefficient (3.1)
L m length

L, kgm?/s angular momentum

1 m length

M kg mass

M; Nm torque

m kg/s mass flow rate

N mol quantity of mater

n polytiopic exponent

n s™! number of revolution

n zeros of transfer function

n mol/s rmolal flow rate

ng mol/s diffusiv molal flow rate

P N/m? pressure

p(z) initial conditions

Q. q J/s heat flow rate (3.2)

q ]/m?s heat flux per unit area (2.3)
R coefficient of resistance

R m radius

R ]7kgK gas constant

1 m radius

1(t) boundary conditions

1(P) J7kg specific heat of vapcrization
S =0 + jw complex variable of Laplace transformation
s J/kgK entropy

T s fime constant

t s time coordinate

U ] internal energy (3.1)

U m circumference

0 input vector

u 1/s heat flow rate (3.)

u 1/kg internal energy

u; input variables, elements of U
v m? volume
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v m3/kg

w m/s

SUBSCRIPTS

el
ex

—

MQAP»>F £ < " vV OO B 7§~y

GREEK

o W/m?K

specific volume

velocity

state vector

state variables, elements of X
outpul vector

output variables, elements of Y
impedance

spatial coordinate

approximative
pipe
damping (2.4)
electrical
external

fluid

input

internal (2.1-1)
critical

mass (2.4)
natural (2.4)
output

spring

pump

sound (2.2-3), (3.3)
torsional (2.4)
valve

wall

water (2.5)
area
gravitation (3.3)
friction

convective heat transfer coefficient
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o coefficient belonging to resistance
YA (_B_V)S
oP
v
B (g‘)p
b m wall thickness
5 symbol of difference (e.g. 3P = P, - P,)
(1) Dirac (impulse) function
A small difference
3 partial derivative
€ emissivity (2.3)
€ rad/s? angular acceleration
3 K temperature
a(s) Laplace transform of temperature
x adiabatic exponent
A coefficient of flow resistance
A W/mK coefficient of thermal conductivity
X eigenvalue
u leakage (outflow) coefficient
m friction coefficient (2.4)
v m?/s kinematic viscosity
E damping coefficient
") density
o real part of complex variable s
o N/m? strtess (3.3)
o = (2,
Ts (%)p
P rad angle
) gas characteristic
©® imaginary parnt of complex variable s
w rad/s angular velocity
© s™! natural frequency
L, &7 Lapalace transformation and its inveise,

respectively
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SPECIAL NOTATIONS

DE differential equation

ODE ordinary differential equation

PDE partial differential equation

L linear

NL nonlinear

h', h"

e o ] saturation variables in Sec. 2.5 and 3.3
vV vt

Throughout this whole book we have been consistent in changing,
after Laplace transformation, every lower-case letter denoting a time
function into an upper-case letter, to represent transformation into the
complex s-domain (for example, after transformation m(t) became M(s). 8(1)
became 6(s) and so on).

A line over a symbol represents the value of the physical variable in
the steady state (for example P, ¥ and m are pressure, specific volume
and mass flow rale in the operating regime in which there is no time
change - in the steady operating state). Boldface symbols denote matrices
and vectors.
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